Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 12(6): 555, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050139

RESUMEN

Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.


Asunto(s)
Neoplasias Hepáticas/genética , MicroARNs/antagonistas & inhibidores , Mitocondrias/metabolismo , Animales , Apoptosis , Muerte Celular , Femenino , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos
2.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261190

RESUMEN

Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in chronic liver disease. Ubiquitination is a post-translational modification that is crucial for a plethora of physiological processes. Even though the ubiquitin system has been implicated in several human diseases, the role of ubiquitination in liver fibrosis remains poorly understood. Here, multi-omics approaches were used to address this. Untargeted metabolomics showed that carbon tetrachloride (CCl4)-induced liver fibrosis promotes changes in the hepatic metabolome, specifically in glycerophospholipids and sphingolipids. Gene ontology analysis of public deposited gene array-based data and validation in our mouse model showed that the biological process "protein polyubiquitination" is enriched after CCl4-induced liver fibrosis. Finally, by using transgenic mice expressing biotinylated ubiquitin (bioUb mice), the ubiquitinated proteome was isolated and characterized by mass spectrometry in order to unravel the hepatic ubiquitinated proteome fingerprint in CCl4-induced liver fibrosis. Under these conditions, ubiquitination appears to be involved in the regulation of cell death and survival, cell function, lipid metabolism, and DNA repair. Finally, ubiquitination of proliferating cell nuclear antigen (PCNA) is induced during CCl4-induced liver fibrosis and associated with the DNA damage response (DDR). Overall, hepatic ubiquitome profiling can highlight new therapeutic targets for the clinical management of liver fibrosis.


Asunto(s)
Genómica , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ubiquitinación , Animales , Tetracloruro de Carbono , Daño del ADN , Reparación del ADN , Células Hep G2 , Humanos , Cirrosis Hepática/inducido químicamente , Regeneración Hepática , Ratones Endogámicos C57BL , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteoma/metabolismo
3.
Hepatol Commun ; 1(9): 911-927, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29159325

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the advanced form of nonalcoholic fatty liver disease (NAFLD) which sets the stage for further liver damage. The mechanism for the progression of NASH involves multiple parallel hits including oxidative stress, mitochondrial dysfunction, inflammation and others. Manipulation of any of these pathways may be an approach to prevent NASH development and progression. Aramchol (arachidyl-amido cholanoic acid) is presently in a phase IIb NASH study. The aim of this study was to investigate Aramchol's mechanism of action and its effect on fibrosis using the methionine- and choline-deficient (MCD) diet model of NASH. We collected liver and serum from mice fed a MCD diet containing 0.1% methionine (0.1MCD) for four weeks, which developed steatohepatitis and fibrosis, as well as mice receiving a control diet; the metabolomes and proteomes were determined. 0.1MCD fed mice were given Aramchol (5mg/kg/day for the last 2 weeks); liver samples were analyzed histologically. Aramchol administration reduced features of steatohepatitis and fibrosis in 0.1MCD fed mice. Aramchol downregulated stearoyl-CoA desaturase 1 (SCD1), a key enzyme involved in triglyceride biosynthesis whose loss enhances fatty acid ß-oxidation. Aramchol increased the flux through the transsulfuration pathway, leading to a rise in glutathione (GSH) and GSH/GSSG ratio, the main cellular antioxidant that maintains intracellular redox status. Comparison of serum metabolomic pattern between 0.1MCD fed mice and NAFLD patients showed a substantial overlap. CONCLUSIONS: Aramchol treatment improved steatohepatitis and fibrosis by 1) decreasing SCD1, and 2) increasing the flux through the transsulfuration pathway maintaining cellular redox homeostasis. We also demonstrated that the 0.1MCD model resembles the metabolic phenotype observed in about 50% of NAFLD patients, which supports the potential use of Aramchol in NASH treatment.

4.
J Hepatol ; 64(2): 409-418, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26394163

RESUMEN

BACKGROUND & AIMS: Glycine N-methyltransferase (GNMT) expression is decreased in some patients with severe non-alcoholic fatty liver disease. Gnmt deficiency in mice (Gnmt-KO) results in abnormally elevated serum levels of methionine and its metabolite S-adenosylmethionine (SAMe), and this leads to rapid liver steatosis development. Autophagy plays a critical role in lipid catabolism (lipophagy), and defects in autophagy have been related to liver steatosis development. Since methionine and its metabolite SAMe are well known inactivators of autophagy, we aimed to examine whether high levels of both metabolites could block autophagy-mediated lipid catabolism. METHODS: We examined methionine levels in a cohort of 358 serum samples from steatotic patients. We used hepatocytes cultured with methionine and SAMe, and hepatocytes and livers from Gnmt-KO mice. RESULTS: We detected a significant increase in serum methionine levels in steatotic patients. We observed that autophagy and lipophagy were impaired in hepatocytes cultured with high methionine and SAMe, and that Gnmt-KO livers were characterized by an impairment in autophagy functionality, likely caused by defects at the lysosomal level. Elevated levels of methionine and SAMe activated PP2A by methylation, while blocking PP2A activity restored autophagy flux in Gnmt-KO hepatocytes, and in hepatocytes treated with SAMe and methionine. Finally, normalization of methionine and SAMe levels in Gnmt-KO mice using a methionine deficient diet normalized the methylation capacity, PP2A methylation, autophagy, and ameliorated liver steatosis. CONCLUSIONS: These data suggest that elevated levels of methionine and SAMe can inhibit autophagic catabolism of lipids contributing to liver steatosis.


Asunto(s)
Autofagia/fisiología , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Metionina/sangre , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/sangre , Animales , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Hígado Graso/patología , Humanos , Metilación , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...