Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
NPJ Regen Med ; 5: 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411395

RESUMEN

Skeletal muscle is an ideal target for cell therapy. The use of its potent stem cell population in the form of autologous intramuscular transplantation represents a tantalizing strategy to slow the progression of congenital muscle diseases (such as Duchenne Muscular Dystrophy) or regenerate injured tissue following trauma. The syncytial nature of skeletal muscle uniquely permits the engraftment of stem/progenitor cells to contribute to new myonuclei and restore the expression of genes mutated in myopathies. Historically however, the implementation of this approach has been significantly limited by the inability to expand undifferentiated muscle stem cells (MuSCs) in culture whilst maintaining transplantation potential. This is crucial, as MuSC expansion and/or genetic manipulation is likely necessary for therapeutic applications. In this article, we review recent studies that have provided a number of important breakthroughs to tackle this problem. Progress towards this goal has been achieved by exploiting biochemical, biophysical and developmental paradigms to construct innovative in vitro strategies that are guiding stem cell therapies for muscle repair towards the clinic.

2.
Cell Stem Cell ; 22(2): 177-190.e7, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395054

RESUMEN

The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of ß-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.


Asunto(s)
Desarrollo de Músculos , Proteína Metiltransferasas/antagonistas & inhibidores , Trasplante de Células Madre , Células Madre/citología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Autorrenovación de las Células/efectos de los fármacos , Células Cultivadas , Eliminación de Gen , N-Metiltransferasa de Histona-Lisina , Ratones , Músculo Esquelético/fisiología , Proteína MioD/metabolismo , Unión Proteica/efectos de los fármacos , Proteína Metiltransferasas/metabolismo , Pirrolidinas/farmacología , Regeneración/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Sulfonamidas/farmacología , Tetrahidroisoquinolinas/farmacología , beta Catenina/metabolismo
3.
Methods Mol Biol ; 1668: 93-103, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28842904

RESUMEN

Fibro/Adipogenic Progenitors (FAPs) are a multipotent progenitor population resident in skeletal muscle. During development and regeneration, FAPs provide trophic support to myogenic progenitors that is required for muscle fiber maturation and specification. FAPs also represent a major cellular source of fibrosis in degenerative disease states, highlighting them as a potential cellular target for anti-fibrotic muscle therapies. Effective and reproducible methods to isolate and culture highly purified FAP populations are therefore critical to further understand their biology. Here, we describe a fluorescent activated cell sorting (FACS) based protocol to isolate CD31-/CD45-/Integrin-α7-/Sca1+ FAPs from murine skeletal muscle including details of tissue collection and enzymatic muscle digestion. We also incorporate optimized methods of expanding and differentiated FAPs in vitro. Together, this protocol provides a complete workflow to study skeletal muscle derived FAPs and compliments downstream analytical, drug screening, and disease modeling applications.


Asunto(s)
Diferenciación Celular , Separación Celular/métodos , Citometría de Flujo/métodos , Células Madre Multipotentes/fisiología , Células Satélite del Músculo Esquelético/fisiología , Adipogénesis , Animales , Antígenos de Superficie/análisis , Ratones , Células Madre Multipotentes/citología , Desarrollo de Músculos , Osteogénesis , Cultivo Primario de Células , Regeneración , Células Satélite del Músculo Esquelético/citología
4.
Stem Cell Res ; 17(1): 161-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27376715

RESUMEN

Acute skeletal muscle injury triggers an expansion of fibro/adipogenic progenitors (FAPs) and a transient stage of fibrogenesis characterized by extracellular matrix deposition. While the perpetuation of such phase can lead to permanent tissue scarring, the consequences of its suppression remain to be studied. Using a model of acute muscle damage we were able to determine that pharmacological inhibition of FAP expansion by Nilotinib, a tyrosine kinase inhibitor with potent antifibrotic activity, exerts a detrimental effect on myogenesis during regeneration. We found that Nilotinib inhibits the damage-induced expansion of satellite cells in vivo, but it does not affect in vitro proliferation, suggesting a non cell-autonomous effect. Nilotinib impairs regenerative fibrogenesis by preventing the injury-triggered expansion and differentiation of resident CD45(-):CD31(-):α7integrin(-):Sca1(+) mesenchymal FAPs. Our data support the notion that the expansion of FAPs and transient fibrogenesis observed during regeneration play an important trophic role toward tissue-specific stem cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Músculo Esquelético/fisiología , Pirimidinas/farmacología , Células Madre/citología , Animales , Células Cultivadas , Ratones , Microscopía Fluorescente , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/citología , Mioblastos/citología , Mioblastos/efectos de los fármacos , Regeneración/efectos de los fármacos , Células Madre/metabolismo
5.
Skelet Muscle ; 6: 22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27239264

RESUMEN

BACKGROUND: Euchromatic histone-lysine N-methyltransferase 2 (G9a/Ehmt2) is the main enzyme responsible for the apposition of H3K9 di-methylation on histones. Due to its dual role as an epigenetic regulator and in the regulation of non-histone proteins through direct methylation, G9a has been implicated in a number of biological processes relevant to cell fate control. Recent reports employing in vitro cell lines indicate that Ehmt2 methylates MyoD to repress its transcriptional activity and therefore its ability to induce differentiation of activated myogenic cells. METHODS: To further investigate the importance of G9a in modulating myogenic regeneration in vivo, we crossed Ehmt2 (floxed) mice to animals expressing Cre recombinase from the Myod locus, resulting in efficient knockout in the entire skeletal muscle lineage (Ehmt2 (ΔmyoD) ). RESULTS: Surprisingly, despite a dramatic drop in the global levels of H3K9me2, knockout animals did not show any developmental phenotype in muscle size and appearance. Consistent with this finding, purified Ehmt2 (ΔmyoD) satellite cells had rates of activation and proliferation similar to wild-type controls. When induced to differentiate in vitro, Ehmt2 knockout cells differentiated with kinetics similar to those of control cells and demonstrated normal capacity to form myotubes. After acute muscle injury, knockout mice regenerated as efficiently as wildtype. To exclude possible compensatory mechanisms elicited by the loss of G9a during development, we restricted the knockout within adult satellite cells by crossing Ehmt2 (floxed) mice to Pax7 (CreERT2) and also found normal muscle regeneration capacity. CONCLUSIONS: Thus, Ehmt2 and H3K9me2 do not play significant roles in skeletal muscle development and regeneration in vivo.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/deficiencia , Desarrollo de Músculos , Músculo Esquelético/enzimología , Enfermedades Musculares/enzimología , Regeneración , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Venenos Elapídicos , Regulación del Desarrollo de la Expresión Génica , Genotipo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Cinética , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Fenotipo , Células Satélite del Músculo Esquelético/enzimología , Células Satélite del Músculo Esquelético/patología , Transducción de Señal
6.
Cancer Cell ; 26(2): 273-87, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25087979

RESUMEN

The role of the Hippo pathway effector YAP1 in soft tissue sarcomas is poorly defined. Here we report that YAP1 activity is elevated in human embryonal rhabdomyosarcoma (ERMS). In mice, sustained YAP1 hyperactivity in activated, but not quiescent, satellite cells induces ERMS with high penetrance and short latency. Via its transcriptional program with TEAD1, YAP1 directly regulates several major hallmarks of ERMS. YAP1-TEAD1 upregulate pro-proliferative and oncogenic genes and maintain the ERMS differentiation block by interfering with MYOD1 and MEF2 pro-differentiation activities. Normalization of YAP1 expression reduces tumor burden in human ERMS xenografts and allows YAP1-driven ERMS to differentiate in situ. Collectively, our results identify YAP1 as a potent ERMS oncogenic driver and a promising target for differentiation therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Transformación Celular Neoplásica/metabolismo , Neoplasias de los Músculos/metabolismo , Fosfoproteínas/fisiología , Rabdomiosarcoma Embrionario/metabolismo , Células Satélite del Músculo Esquelético/patología , Animales , Diferenciación Celular/genética , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Dosificación de Gen , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Neoplasias de los Músculos/mortalidad , Neoplasias de los Músculos/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Proteína MioD , Trasplante de Neoplasias , Proteínas Nucleares/metabolismo , Oncogenes , Rabdomiosarcoma Embrionario/mortalidad , Rabdomiosarcoma Embrionario/patología , Factores de Transcripción de Dominio TEA , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
7.
Sci Signal ; 7(337): re4, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25097035

RESUMEN

The discovery of the Hippo pathway can be traced back to two areas of research. Genetic screens in fruit flies led to the identification of the Hippo pathway kinases and scaffolding proteins that function together to suppress cell proliferation and tumor growth. Independent research, often in the context of muscle biology, described Tead (TEA domain) transcription factors, which bind CATTCC DNA motifs to regulate gene expression. These two research areas were joined by the finding that the Hippo pathway regulates the activity of Tead transcription factors mainly through phosphorylation of the transcriptional coactivators Yap and Taz, which bind to and activate Teads. Additionally, many other signal transduction proteins crosstalk to members of the Hippo pathway forming a Hippo signal transduction network. We discuss evidence that the Hippo signal transduction network plays important roles in myogenesis, regeneration, muscular dystrophy, and rhabdomyosarcoma in skeletal muscle, as well as in myogenesis, organ size control, and regeneration of the heart. Understanding the role of Hippo kinases in skeletal and heart muscle physiology could have important implications for translational research.


Asunto(s)
Corazón/fisiología , Modelos Moleculares , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corazón/embriología , Vía de Señalización Hippo , Humanos , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Regeneración/fisiología , Rabdomiosarcoma/genética , Rabdomiosarcoma/fisiopatología , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
8.
FEBS J ; 280(17): 4100-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23763717

RESUMEN

Although the regenerative potential of adult skeletal muscle is maintained by satellite cells, other stem/progenitor cell populations also reside in skeletal muscle. These heterogeneous cellular pools with mesenchymal lineage potentially play important roles in tissue homeostasis, with reciprocal collaborations between these cells and satellite cells appearing critical for effective regeneration. However, in disease settings, these mesenchymal stem/progenitors adopt a more sinister role - likely providing a major source of fibrosis, fatty tissue and extracellular matrix protein deposition in dystrophic tissue. Development of therapies for muscle degeneration therefore requires complete understanding of the multiple cell types involved and their complex interactions.


Asunto(s)
Células Madre Mesenquimatosas/citología , Desarrollo de Músculos/fisiología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/citología , Animales , Diferenciación Celular , Humanos , Células Madre Mesenquimatosas/fisiología , Células Satélite del Músculo Esquelético/fisiología
9.
PLoS One ; 8(3): e59622, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23544078

RESUMEN

The aim of this study was to investigate the function of the Hippo pathway member Yes-associated protein (Yap, gene name Yap1) in skeletal muscle fibres in vivo. Specifically we bred an inducible, skeletal muscle fibre-specific knock-in mouse model (MCK-tTA-hYAP1 S127A) to test whether the over expression of constitutively active Yap (hYAP1 S127A) is sufficient to drive muscle hypertrophy or stimulate changes in fibre type composition. Unexpectedly, after 5-7 weeks of constitutive hYAP1 S127A over expression, mice suddenly and rapidly lost 20-25% body weight and suffered from gait impairments and kyphosis. Skeletal muscles atrophied by 34-40% and the muscle fibre cross sectional area decreased by ≈40% when compared to control mice. Histological analysis revealed evidence of skeletal muscle degeneration and regeneration, necrotic fibres and a NADH-TR staining resembling centronuclear myopathy. In agreement with the histology, mRNA expression of markers of regenerative myogenesis (embryonic myosin heavy chain, Myf5, myogenin, Pax7) and muscle protein degradation (atrogin-1, MuRF1) were significantly elevated in muscles from transgenic mice versus control. No significant changes in fibre type composition were detected using ATPase staining. The phenotype was largely reversible, as a cessation of hYAP1 S127A expression rescued body and muscle weight, restored muscle morphology and prevented further pathological progression. To conclude, high Yap activity in muscle fibres does not induce fibre hypertrophy nor fibre type changes but instead results in a reversible atrophy and deterioration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/metabolismo , Enfermedades Musculares/metabolismo , Fosfoproteínas/metabolismo , Envejecimiento/patología , Animales , Doxiciclina/administración & dosificación , Doxiciclina/farmacología , Perfilación de la Expresión Génica , Humanos , Cifosis/complicaciones , Cifosis/metabolismo , Cifosis/patología , Ratones , Ratones Transgénicos , Fibras Musculares Esqueléticas/efectos de los fármacos , Atrofia Muscular/complicaciones , Atrofia Muscular/patología , Enfermedades Musculares/complicaciones , Enfermedades Musculares/patología , Proteínas Mutantes/metabolismo , Necrosis , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Factores de Transcripción , Transgenes/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Síndrome Debilitante/complicaciones , Síndrome Debilitante/metabolismo , Síndrome Debilitante/patología , Pérdida de Peso/efectos de los fármacos , Proteínas Señalizadoras YAP
10.
J Cell Sci ; 125(Pt 24): 6009-19, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23038772

RESUMEN

Satellite cells are the resident stem cells of skeletal muscle. Mitotically quiescent in mature muscle, they can be activated to proliferate and generate myoblasts to supply further myonuclei to hypertrophying or regenerating muscle fibres, or self-renew to maintain the resident stem cell pool. Here, we identify the transcriptional co-factor Yap as a novel regulator of satellite cell fate decisions. Yap expression increases during satellite cell activation and Yap remains highly expressed until after the differentiation versus self-renewal decision is made. Constitutive expression of Yap maintains Pax7(+) and MyoD(+) satellite cells and satellite cell-derived myoblasts, promotes proliferation but prevents differentiation. In contrast, Yap knockdown reduces the proliferation of satellite cell-derived myoblasts by ≈40%. Consistent with the cellular phenotype, microarrays show that Yap increases expression of genes associated with Yap inhibition, the cell cycle, ribosome biogenesis and that it represses several genes associated with angiotensin signalling. We also identify known regulators of satellite cell function such as BMP4, CD34 and Myf6 (Mrf4) as genes whose expression is dependent on Yap activity. Finally, we confirm in myoblasts that Yap binds to Tead transcription factors and co-activates MCAT elements which are enriched in the proximal promoters of Yap-responsive genes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Procesos de Crecimiento Celular/fisiología , Núcleo Celular/metabolismo , Embrión de Pollo , Vía de Señalización Hippo , Caballos , Ratones , Fosfoproteínas/genética , Transducción de Señal , Transfección , Proteínas Señalizadoras YAP
11.
J Gerontol A Biol Sci Med Sci ; 66(1): 130-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20966103

RESUMEN

BACKGROUND: Falls among elderly people is a major issue in public health, causing debilitating outcomes including fracture. The identification of genetic risk factors for falling may provide a strategy for effectively targeting falls prevention programs. We investigated whether a common functional variant of skeletal muscle α-actinin-3 (ACTN3 p. R577X) previously associated with impairments in muscle strength, power, and physical functioning represents a risk factor for falls. METHODS: Case-control analysis was conducted using two large cohorts of Caucasian postmenopausal women--the North of Scotland Osteoporosis Study (n = 1,245) and the Aberdeen Prospective Osteoporosis Screening Study (n = 2,918)--for whom self-reported falls status and DNA samples were available. Cross-sectional analysis of fallers versus nonfallers at baseline and follow-up was performed. In addition, individuals who reported having fallen at more than one timepoint (recurrent fallers) were compared with those who reported not falling at any timepoint. RESULTS: Association between R577X genotype and falls was identified and validated. Carriage of 577X (one or two copies) was significantly associated with a 33% (10%-61%) increased risk of falling, with the effect apparent at both baseline and follow-up assessments (meta-analysis p = .003 and p = .02, respectively). No significant effect on recurrent falls was observed. CONCLUSION: This study reports for the first time that the functional ACTN3 R577X genotype represents a genetic risk factor for falling in older females.


Asunto(s)
Accidentes por Caídas , Actinina/genética , Polimorfismo Genético , Actinina/fisiología , Anciano , Estudios de Cohortes , Femenino , Genotipo , Humanos , Persona de Mediana Edad , Músculo Esquelético/fisiología , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...