Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-20853202

RESUMEN

There are many abandon and existing mines (tin, lead and zinc) in the mountainous areas of Thailand. Toxic elements including heavy metals such as lead (Pb), cadmium (Cd) and arsenic (As) have been released and transported from the mining sites to the adjacent landscape. In Thong Pha Phum District, Kanchanaburi Province, Thailand Pb contamination in the vicinity of the mine has occurred which could lead to potential health problems in downstream communities. To better understand current status of Pb contamination and accumulation in the surrounding environment and potential health impact, surface sediment, soil and plant samples were collected seasonally from representative monitoring sites along the aquatic track or flow regime. Potential health risk was determined using hazard quotient (HQ) as an index for local inhabitants who consume rice. Environmental monitoring illustrated that Pb concentrations in the surface sediment was as high as 869.4 mg kg(-1) dry weight and varied differently among stations sampled. Lead content in agricultural soil ranged between 137.8 to 613.5 mg kg(-1) dry weight and was inversely proportion to the distance from the point source. Moreover Pb was transported from the point source to down hill areas. At the highly polluted monitoring stations (S1, S2, and S3), concentrations of Pb exceeded the maximum allowable concentration for Pb in agricultural soil (300 mg kg(-1)) by 1.7-2 times. The Pb in soil was primarily associated with Fe/Mn oxides bound fraction (46-56%) followed by the organic bound fraction (25-30%). Lead uptake by plant varied and was species dependent. However root and tuber crops like cassava (19.92 mg Pb kg(-1) dry weight) and curcumin (3.25 mg Pb kg(-1) dry weight) could have removed Pb from the soil which suggest growing root crops in Pb contaminated soils should be avoided. However Cd, a co-contaminant at one of monitored stations (S4) yielded rice grain with Cd exceeding the maximum allowable concentration suggesting some potential health risk (HQ = 5.34) if people consume rice grown at this station. Overall result shows a low risk associated with Pb release into the environment.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Plomo/análisis , Minería , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Monitoreo del Ambiente/estadística & datos numéricos , Contaminación de Alimentos/análisis , Estado de Salud , Plomo/toxicidad , Modelos Teóricos , Oryza/química , Oryza/crecimiento & desarrollo , Medición de Riesgo , Estaciones del Año , Suelo/análisis , Suelo/normas , Contaminantes del Suelo/toxicidad , Tailandia , Movimientos del Agua , Contaminantes Químicos del Agua/toxicidad
2.
Artículo en Inglés | MEDLINE | ID: mdl-20390867

RESUMEN

This study evaluated the application of nanoscale metallic particles (nanoscale zero-valent iron (nZVI) particles) in the remediation of TNT in contaminated water and soil samples. The effects of treatment dosages of synthesized nZVI particles and reaction time on degradation rate of TNT were determined. The synthesized nZVI particles (99.99% pure) size distribution was between 20-100 nm (average particle size 80 nm), with a surface area of 21.63 +/- 0.24 m(2)/g. The optimum dosage of nZVI for degradation of 10 mg/L TNT in the contaminated water was 2000 mg/L (w/v) at a reaction time 20 min. However, trace level of TNT remained since the BOD(5) and COD levels at the optimum nZVI treatment dosage were 834 +/- 8 mg/L and 1280 +/- 900 mg/L, respectively. The BOD(5)/COD ratio was 0.65, which was higher than the BOD(5)/COD ratios for the other nZVI dosages which supports the beneficial effect of using nZVI particles for enhancing degradation of TNT. The observed first-order degradation rate of TNT at 25 degrees C was 0.137 min(-1) corresponding to a degradation rate of 0.156 L/m(2) h. In experiments using sandy clay loam soil containing 20 mg/kg TNT in slurry form (1:2 soil to solution ratio, the optimum nZVI treatment dosage that resulted in 99.88% TNT removal was 5000 mg/kg soil. Less toxic intermediate products and their concentrations following degradation were 2-ADNT and 4-ADNT at 0.90 and 0.10 mg/kg, respectively. Results of this study indicate it is feasible to use nZVI for the remediation of TNT-contaminated water and soil samples as a pre-treatment step however secondary treatments such as phyto-remediation or other biological processes may be needed to remove any residue or intermediate products of TNT degradation.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hierro/química , Nanopartículas/química , Contaminantes del Suelo/química , Trinitrotolueno/química , Contaminantes Químicos del Agua/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-20390902

RESUMEN

The effect of organic carbon addition on remediation of trichloroethylene (TCE) contaminated clay soil was investigated using a two stage anaerobic-aerobic composting system. TCE removal rate and processes involved were determined. Uncontaminated clay soil was treated with composting materials (dried cow manure, rice husk and cane molasses) to represent carbon based treatments (5%, 10% and 20% OC). All treatments were spiked with TCE at 1,000 mg TCE/kg DW and incubated under anaerobic and mesophillic condition (35 degrees C) for 8 weeks followed by continuous aerobic condition for another 6 weeks. TCE dissipation, its metabolites and biogas composition were measured throughout the experimental period. Results show that TCE degradation depended upon the amount of organic carbon (OC) contained within the composting treatments/matrices. The highest TCE removal percentage (97%) and rate (75.06 micro Mole/kg DW/day) were obtained from a treatment of 10% OC composting matrices as compared to 87% and 27.75 micro Mole/kg DW/day for 20% OC, and 83% and 38.08 micro Mole/kg DW/day for soil control treatment. TCE removal rate was first order reaction kinetics. Highest degradation rate constant (k(1) = 0.035 day(- 1)) was also obtained from the 10% OC treatment, followed by 20% OC (k(1) = 0.026 day(- 1)) and 5% OC or soil control treatment (k(1) = 0.023 day(- 1)). The half-life was 20, 27 and 30 days, respectively. The overall results suggest that sequential two stages anaerobic-aerobic composting technique has potential for remediation of TCE in heavy texture soil, providing that easily biodegradable source of organic carbon is present.


Asunto(s)
Aerobiosis , Anaerobiosis , Contaminantes del Suelo/aislamiento & purificación , Tricloroetileno/aislamiento & purificación , Cromatografía de Gases
4.
Artículo en Inglés | MEDLINE | ID: mdl-19337918

RESUMEN

Sediment samples (543) collected from selected Louisiana streams and lakes were analyzed for total Hg and methyl Hg content. The average total Hg content among 543 samples was 92.3 +/- 95.1 microg kg(-1). The average methyl Hg content in the samples was 0.68 +/- 0.80 microg kg(-1). Methyl Hg accounted for an average of 0.73% of the total Hg in sediment. Linear regression analysis of total Hg versus methyl Hg content of the sediment showed methyl Hg content was significantly correlated to total Hg content of sediment (P > 0.01, n = 537) and sediment organic matter content. (P > 0.01, n = 536) Methyl Hg was also positively correlated to clay (P > 0.01, n = 537) and inversely correlated to sand content of sediment (P > 0.01, n = 537). Total Hg and methyl Hg content in these sediments was within the normal range reported elsewhere indicating no significant industrial or municipal Hg contamination. A comparison of selected water bodies with fishing advisories showed no relationship to total Hg and methyl Hg in sediment.


Asunto(s)
Agua Dulce/química , Sedimentos Geológicos/química , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Conducta Alimentaria , Guías como Asunto , Humanos , Louisiana , Alimentos Marinos/normas
5.
Artículo en Inglés | MEDLINE | ID: mdl-19184705

RESUMEN

In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and

Asunto(s)
Contaminantes Ambientales/análisis , Incineración , Mercurio/análisis , Eliminación de Residuos/instrumentación , Contaminantes Ambientales/toxicidad , Humanos , Mercurio/toxicidad , Medición de Riesgo , Tailandia
6.
Artículo en Inglés | MEDLINE | ID: mdl-19132586

RESUMEN

Untreated or partially treated waste water discharge from industrial and domestic sources entering the Upper Gulf of Thailand have been reported to increase cadmium concentration in bottom sediment. This study was directed at providing a better understanding of cadmium transformation in the sediment from the area. Sediment samples collected from Chao Phraya River mouth (CPY), Bang Pakong River mouth (BPK) and Klong Dan estuary (KD) located in the Upper Gulf of Thailand were analyzed for cadmium concentration in various sediment particle size fractions. Using laboratory microcosms, cadmium release from sediment as affected by salinity and sediment redox condition was studied. A higher concentration of cadmium (0.2-0.6 microg/g dry weight) was measured in finer sediment particle size fractions (<0.075 mm) as compared to courser fractions at all sampling stations. Cadmium release from the sediment to water was influenced by both salinity and redox condition. Sediment was spiked with 10 ppm cadmium which is the cadmium level in sediment adopted by the Australia and New Zealand sediment quality guidelines which can cause adverse environmental impacts. Experiments conducted showed soluble cadmium concentration at sediment oxidation reduction conditions representative of bottom sediment were at levels that can adversely impact aquatic organisms, according to the PCADMIUM water quality guideline. In Thailand, there is no sediment quality guideline. Based on these experiments, 10 ppm of cadmium in sediment was recommended as a regulatory guidelines for allowable levels of cadmium in sediment in the study area.


Asunto(s)
Cadmio/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Tamaño de la Partícula , Agua de Mar , Cloruro de Sodio/análisis
7.
Artículo en Inglés | MEDLINE | ID: mdl-18988103

RESUMEN

Accumulation of methylmercury (MeHg) in aquatic biota is a primary toxicological concern associated with Hg contamination in the environment. This study reports total mercury (THg) and MeHg measurements in 11 swamp and 24 marsh soils/sediments in wetlands surrounding Lake Pontchartrain and Lake Maurepas located in Louisiana's Pontchartrain Basin. The salinity level ranged from fresh, brackish to salt water. Average THg content in the swamp soils/sediments (112.3 microg kg(-1), n = 10) was significantly higher (P = 0.04) than in the marsh soils/sediments (56.5 microg kg(-1), n = 24). The THg content in the marsh soils/sediments tended to decrease with salinity increase, probably due to geographical locations of the sampling sites with less Hg input in more saline regions. Average MeHg content in the soils/sediments was 1.3 microg kg(-1) (n = 34), higher than reported values in the bottom sediments of Lake Maurepas (0.8 microg kg(-1), n = 27) and Lake Pontchartrain (0.6 microg kg(-1), n = 147). Average MeHg/THg ratio in the marsh soils/sediments (0.022) was considerably higher than in the swamp soils/sediments (0.012). Analysis of MeHg/THg ratio along the salinity gradient at the marsh soils/sediments show that the highest MeHg/THg ratio (up to 0.040, n = 5) was found at the fresh/brackish water sites, and the lowest (0.002, n = 1) at the salt water site. Results suggest that there was a greater potential for MeHg formation in wetland soils/sediments than in bottom sediments of adjacent lakes. Results suggest that wetland surrounding the lakes may be a potential source of MeHg to the aquatic food chain and significance is governed by area of the adjacent wetland.


Asunto(s)
Sedimentos Geológicos/química , Compuestos de Metilmercurio/análisis , Contaminantes del Suelo/análisis , Humedales , Louisiana , Plantas/química , Especificidad de la Especie
8.
Artículo en Inglés | MEDLINE | ID: mdl-18569314

RESUMEN

Concentration of total Hg, methyl Hg, and other heavy metals were determined in sediment collected along a salinity gradient in a Louisiana Gulf Coast estuary. Surface sediment was collected at established coordinates (n = 292) along a salinity gradient covering Lake Maurepas, Lake Pontchartrain, Lake Borgne and the Chandeleur Sound located in the 12,170 km(2) Pontchartrain basin estuary southeastern coastal Louisiana. Lake Maurepas sediment with lower salinity contained higher levels of methyl Hg (0.80 microg/kg) than Lake Pontchartrain (0.55 microg/kg). Lake Maurepas sediment also had higher levels of total Hg (98.0 microg/kg) as compared to Lake Pontchartrain (67.0 microg/kg). Average total Hg content of Lake Borgne and the Chandeleur Sound sediment was 24.0 microg/kg dry sediment and methyl Hg content averaged 0.21 microg/kg dry sediment. Methyl Hg content of sediment was positively correlated with total Hg, organic matter and clay content of sediment. Methyl Hg was inversely correlated with salinity, sediment Eh and sand content. Total Hg and methyl Hg decreased with increase in salinity in the order of Lake Maurepas > Lake Pontchartrain > Lake Borgne/ the Chandeleur Sound. Lake Maurepas containing several times higher amount of methyl Hg in sediment as compared to Lake Pontchartrain and Lake Borgne and the Chandeleur Sound is an area that could serve as potential source of mercury to the aquatic food chain. Methyl Hg content of sediment in the estuary could be predicted by the equation: Methyl Hg = 0.11670-0.0625 x Salinity + 0.05349 x O.M. + 0.00513 x Total Hg - 0.00250 x Clay. Concentrations of other toxic heavy metals (Pb, Cd, Ni, Cu and Zn) in sediment were not elevated and was statistically correlated with sediment texture and iron and aluminum content of sediment.


Asunto(s)
Ecosistema , Sedimentos Geológicos/química , Mercurio/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Louisiana
9.
Artículo en Inglés | MEDLINE | ID: mdl-17558772

RESUMEN

This research investigated operating parameters and treatment efficiency for the digestion of sewage and brewery sludge. The prime objective of this study was to enhance the quality of treated sludge for use as agriculture fertilizer and to enhance biogas production, a by-product that can be used as an energy source. Three bench-scale completely stirred tank reactor (CSTR) anaerobic digesters were operated at mesophilic condition (36+/-0.2 degrees C). A mixture of sewage and brewery sludge were used as substrates at ratios of 100:0, 75:25, 50:50, 25:75 and 0:100, based on wet weight basis (w/w). For each digester, the solids retention times (SRT) were 20 days. The organic loading and volatile solids loading were between 1.3-2.2 kg chemical oxygen demand (COD)/m3/day and 0.9-1.5 kg/m3/day, respectively. The digester fed with brewery sludge as co-substrate yielded higher treatment efficiency than sewage sludge alone. The removal efficiencies measured in terms of soluble chemical oxygen demand (SCOD) and total chemical oxygen demands (TCOD) ranged from 40% to 75% and 22% to 35%, respectively. Higher SCOD and TCOD removal efficiencies were obtained when higher fractions of brewery sludge was added to the substrate mixture. Removal efficiency was lowest for sewage sludge alone. Measured volatile solid (VS) reduction ranged from 15% to 20%. Adding a higher fraction of brewery sludge to the mixture increased the VS reduction percentage. The biogas production and methane yield also increased with increase in brewery sludge addition to the digester mixture. The methane content present in biogas of each digester exceeded 70% indicating the system was functioning as an anaerobic process. Likewise the ratio of brewery sewage influenced not only the treatment efficiency but also improved quality of treated sludge by lowering number of pathogen (less than 2 MPN/g of dried sludge) and maintaining a high nutrient concentration of nitrogen (N) 3.2-4.2%, phosphorus (P) 1.9-3.2% and potassium (K) 0.95-0.96%. The heavy metals, chromium (Cr) and copper (Cu) remaining in digested sludge were present at relatively high levels (Cr 1,849-4,230 and Cu 930-2,526 mg/kg dried sludge). The metals were present as organic matter-bound and sulfide-bound fractions that are not soluble and available. The digested sludge could be safely applied to soil as a plant nutrient source, without fecal coliforms or heavy metals risk. A sludge mixture ratio of 25:75 (sewage:brewery), which generated the higher nutrient concentrations (N=4.22%, P=3.20% and K=0.95%), biogas production and treatment efficiency meet the Bangkok Metropolitan Administration (BMA) safety guidelines required for agricultural application. Biogas production and methane at the 25:75 ratio (sewage:brewery) yielded highest amount of VSremoved (0.65 m3/kg) and CODremoved (220 L/kg), respectively.


Asunto(s)
Anaerobiosis , Cerveza , Reactores Biológicos , Metano/biosíntesis , Aguas del Alcantarillado/análisis , Administración de Residuos/métodos , Metales Pesados/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Factores de Tiempo , Contaminantes Químicos del Agua/análisis
10.
J Environ Sci Health B ; 41(5): 485-507, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16785162

RESUMEN

Paraquat adsorption, degradation, and remobilization were investigated in representative tropical soils of Yom River Basin, Thailand. Adsorption of paraquat in eight soil samples using batch equilibration techniques indicated that adsorption depended on soil characteristics, including exchangeable basic cations and iron content. Multiple regression analysis indicated significant contribution of exchangeable calcium percentage (ECP), total iron content (TFe) and exchangeable sodium percentage (ESP) to paraquat sorption (Q). ESP and TFe were significant at all adsorption stages, whereas ESP was significant only at the initial stage of paraquat adsorption. Adsorption studies using two soils representing clay and sandy loam textures showed that paraquat adsorption followed the Freundlich model, exhibiting a nonlinear sorption curve. Paraquat adsorption was higher in the clay soil compared to the sandy loam soil with Kf values of 787 and 18, respectively. Desorption was low with 0.04 to 0.17% and 0.80 to 5.83% desorbed in clay and sandy loam soil, respectively, indicating some hysteresis effect. Time-dependent paraquat adsorption fitted to the Elovich kinetic model indicated that diffusion was a rate-limiting process. Paraquat mobility and degradation studies conducted using both field and laboratory soil column experiments with clay soil showed low mobility of paraquat with accumulation only in the surface 0-5 cm layer under field conditions and in the 0-1 cm layer in a laboratory soil column experiment. Degradation of paraquat in soil was faster under field conditions than at ambient laboratory conditions. The degradation rate followed a first-order kinetic model with the DT50 at 36-46 days and DT90 around 119-152 days.


Asunto(s)
Herbicidas/química , Paraquat/química , Contaminantes del Suelo/análisis , Clima Tropical , Adsorción , Calcio/química , Hierro/química , Cinética , Análisis de Regresión , Sodio/química , Tailandia
11.
Chemosphere ; 63(8): 1300-3, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16325884

RESUMEN

Mercury entering wetland environments can be microbially methylated to methylmercury. The purpose of this study was to investigate the historical rate of mercury accumulation and distribution of total and methylmercury in soil profile of Louisiana coastal marshes. Two sediment cores each were taken from Louisiana freshwater marsh and salt marsh. Vertical accretion was determined using the 137Cs dating technique. Total and methylmercury were determined with depth in the soil profiles. The fresh marsh soil on a dry weight basis contained more total and methylmercury than the salt marsh. Average vertical accretion rates in freshwater marsh and salt marsh were 0.90 and 0.75 cm year(-1), respectively. Average total and methylmercury content (to a depth of 30 cm) was 140 and 4.19 microg kg(-1) and 80 and 1.34 microg kg(-1) for the fresh and salt marsh, respectively. Due to greater sediment input resulting in a higher bulk density the salt marsh contained more total mercury per m2 (to 30 cm depth) than the fresh water marsh (5340 microg m(-2) as compared to 2929 microg m(-2)). The amount of methylmercury per m2 to depth of 30 cm was approximately the same for each marsh.


Asunto(s)
Sedimentos Geológicos/análisis , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua Dulce , Louisiana , Agua de Mar
12.
Artículo en Inglés | MEDLINE | ID: mdl-15717783

RESUMEN

Soil extraction of lead contaminated soil collected from sites near an abandoned battery recycling and secondary lead-smelting factory was investigated for potential use in decontaminating soil at the sites. A fractionation study was conducted to elucidate soil retention mechanism for Pb at the site. Three soil pits were selected from an area surrounding the factory based on level of Pb contamination. Soil samples were collected from each pit in two layers: surface soil and subsoil (0-15 cm and 15-30 cm). Soil physical analysis showed that the soil texture was sandy loam and sandy clay loam with clay content between 11-21%. Soil pH was strongly acid to moderately acid (pH 4.8-5.9). Pb levels in the surface soil were 1620 and 153 mg kg(-1) (air-dried basis) respectively for heavily and slightly contaminated soil. A reference soil site contained 15 mg kg(-1) of Pb. Partitioning studies indicated that more than 90% of total Pb in the soil existed in three primary fractions: exchangeable, carbonate, and Fe-Mn oxide. This suggested that Pb sources entering the soil from the Pb factory remained in relatively weakly bound forms, which are mobile and have potentially biological availability. Mobility of Pb as in the soil assessed by mobility factor (MF) was as high as 75% indicating a high potential of Pb remobilization. Due to high mobility, the Pb would be amendable to remediation or removal by soil extraction procedures. To determine if such weekly bound Pb could be easily removed, both soil washing (ex situ) and soil flushing (in situ) techniques were evaluated for potential Pb remediation procedure. Particle size separation of soil into coarse (2.0-0.25 mm), medium (0.25-0.15 mm), and fine size (<0.15 mm) was conducted before initiating soil washing for comparing Pb removal efficiency in these fractions with the indigenous soil fraction. Using EDTA (2:1 mole to Pb) as a washing solution up to 85-95% of Pb was removed under the optimum conditions (retention time = 60 min), and liquid to solid ratio (L/S) at 5:1 for coarse fraction and 10:1 for smaller fraction. Pb could be removed from contaminated soil using EDTA extraction; however, the efficiency was higher in the coarse texture soil fraction. As a result particle size separation is recommended before application of the soil washing procedure. For smaller soil particle size fraction a series of extraction was needed for obtaining an adequate extraction efficiency. Three solvents tested as flushing solution showed 85, 84, and 74% of Pb was removed by EDTA (2:1 mole to Pb), 1M HNO3, and 0.2 M ammonium citrate, respectively after flushing with 20 pore volumes. The capacity of the three flushing solutions to remove Pb from the contaminated soil were ranked in the order: EDTA approximately 1 M HNO3 > 0.2 N ammonium citrate. However, in highly contaminated soil all solvent extract required several Pb leaching cycles. The flushing process using 1 M HNO3 increased soil acidity to extreme acid conditions (pH 2.0) resulting in adverse effects to physicochemical properties of the treated soil. In general, results showed three factors influenced Pb removal by the extraction techniques: (i) initial Pb concentrations, (ii) Pb partitioning within soil, and (iii) particle size of soil matrix.


Asunto(s)
Contaminación Ambiental/prevención & control , Plomo/aislamiento & purificación , Contaminantes del Suelo/aislamiento & purificación , Quelantes/química , Ácido Edético/química , Concentración de Iones de Hidrógeno , Industrias , Plomo/química , Tamaño de la Partícula , Dióxido de Silicio , Movimientos del Agua
13.
Artículo en Inglés | MEDLINE | ID: mdl-15663304

RESUMEN

The ability of three plant species: Helianthus annuus, Nicotiana tabacum, and Vetiveria zizanioides for phytoaccumulation of Pb was studied. Plants were grown in hydroponic solution containing Pb(NO3)2 at concentration of 0.25 and 2.5 mM Pb in the presence or absence of chelating agents (EDTA or DTPA). Lead (Pb) transport and localization within the tissues of the plant species was determined using scanning electron microscope equipped with energy dispersive X-ray spectrometers (SEM-EDS). The addition of chelators increased Pb uptake as compared to plants grown in solution containing Pb alone. Lead taken up by the plant species were concentrated in both leaf and stem at the region of vascular bundles with greater amounts in the leaf portion. Lead granules were also found in the H. annuus root tissue from the epidermis layer to the central axis. After four weeks of growth a 23-fold increase in shoot Pb content for H. annuus and N. tabacum and 17-fold increase in shoot Pb for V. zizanioides resulted from plants grown in the 2.5 mM Pb-EDTA treatment. The higher Pb treatment (2.5 mM Pb containing EDTA) resulted in higher concentrations of Pb in plant tissue at the fourth week of exposure as compared to Pb treatment containing DTPA. Overall, Pb accumulation potential of H. annuus was greater than that of N. tabacum and V. zizanioides as indicated by the bioconcentration factor (171, 70, and 88, respectively). The highest measured Pb concentrations were found in H. annuus roots, stems, and leaves (2668, 843, and 3611 microg/g DW, respectively) grown in the 2.5 mM Pb-EDTA treatment. The addition of chelators caused some reduction in plant growth and biomass. Results showed that the three plant species tested have potential for use in phytoaccumulation of Pb since the Pb was concentrated in leaf and stem as compared to control plants. H. annuus however best meet the prerequisites for a hyperaccumulator plant and would have the potential for use in the restoration of abandoned mines and factories sites contaminated with elevated Pb levels in the soil.


Asunto(s)
Helianthus/metabolismo , Plomo/metabolismo , Nicotiana/metabolismo , Poaceae/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Biomasa , Quelantes/metabolismo , Ácido Edético/metabolismo , Helianthus/química , Plomo/análisis , Microscopía Electrónica de Rastreo , Ácido Pentético/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Poaceae/química , Contaminantes del Suelo/análisis , Nicotiana/química
14.
Artículo en Inglés | MEDLINE | ID: mdl-14672315

RESUMEN

Nineteen native fern species collected from an area in Thailand with high arsenic concentration in soil and in ground water as a result of tin mining was screened for elevated arsenic concentration in fronds. Two species of fern were found to contain elevated arsenic in their fronds in nature: Pityrogramma calomelanos (108-1156 microg g(-1) dried weight) and Pteris vittata (79 microg g(-1) dried weight). Under hydroponic culture Pityrogramma calomelanos (a silver back fern) accumulated arsenic in its shoot at rate of 4616 microg(-1) (dried weight). The accumulation of arsenic in Pityrogramma calomelanos shoot doubled with the addition of an EDTA (Ethelenediamine tetraacetic acid) chelating agent. The highest accumulation occurred 6 weeks after exposure to 10 mg L(-1) arsenic as disodium hydrogen arsenate. The addition of another chelating agent, DMS (Dimercaptosuccinic acid), resulted in a 5-fold decrease in arsenic concentration in the Pityrogramma calomelanos shoot compared to control after 6 weeks of exposure to arsenic. The contrasting effect of the EDTA and DMSA chelating agent was attributed to the strong binding of the thiol group to arsenic ion. This study indicated that Pityrogramma calomelanos uptake and translocate arsenic in the form of arsenate and arsenite rather than the As-DMSA complex. Using phytoextraction efficiency calculations, it was determined that Pityrogramma calomelanos gave the highest arsenic phytoextraction efficiency at 6 weeks after exposure to arsenic in the EDTA treatment, with an efficiency of 77.8 mg As based on whole plant biomass.


Asunto(s)
Arsénico/farmacocinética , Quelantes/farmacología , Ácido Edético/farmacología , Helechos/química , Contaminantes del Suelo/farmacocinética , Succímero/farmacología , Hojas de la Planta/química , Tailandia , Distribución Tisular
15.
Artículo en Inglés | MEDLINE | ID: mdl-12940482

RESUMEN

The Chao Phraya River (near Bangkok) discharges into Gulf of Thailand. Sediment in near shore areas of the gulf contained elevated Cu levels as a result of industry and urban inputs into the region. Adsorption and fractionation studies were conducted for determining availability and retention of Cu in the sediment. Adsorption studies showed that the coastal sediment has a very high capacity to adsorb Cu (in a range of 1500-4000 microg g(-1)). The high organic matter content and clay content of the sediment contributed significantly to the binding of Cu. Increased salinity levels up to 50 ppt had no effect on the adsorption of Cu by the sediment. The results from Cu partitioning and adsorption study further indicate that Cu in sediment in this coastal region is not likely to be easily released into the water phase where the Cu could be toxic to aquatic organisms. Result shows over the short term current inputs of Cu in Samut Prakarn Coastal region will be rapidly adsorbed by the sediment with little return into water column.


Asunto(s)
Cobre/química , Sedimentos Geológicos/química , Contaminantes del Agua/análisis , Adsorción , Disponibilidad Biológica , Monitoreo del Ambiente , Tailandia
16.
Artículo en Inglés | MEDLINE | ID: mdl-12049116

RESUMEN

Determining mobility and availability of metals in sewage sludge amended soil is an environmental concern. Potential leachability and bioavailability of metals following sludge applied to agricultural soil was evaluated. Geochemical forms of metal occurring in sludge-amended soil were subjected to fractionation for understanding heavy metal transformation and remobilization in sludge-amended soil. Metal leachability was determined using reconstructed soil profiles where dewatered sewage sludge was incorporated into the surface 0-10 cm of soil. Two-sludge application rates; 150 and 300 kgN/ha, equivalent to sludge at 4 and 8 ton/ha, were applied to soil columns representing typical agricultural clay soils of Thailand (Rangsit acid sulfate soil). The soil columns were leached with 321 equivalent to 600 mm of surface water using different leachants (distilled water pH 6, distilled water adjusted to pH 3 and rainwater pH 5). Among metals measurement, results showed Mn leachability from sludge-amended Rangsit soil were high at both sludge application rates (18-29% of total Mn applied). The leachability of other metals was less than 2.5 and 7.2% following application of 150 and 300 kgN/ha of sludge, respectively. Results from the experiments indicated that the leachant at pH 3 had the most effect on potential leachability of Cu, Zn, Cd, and Ni, except Fe and Mn, at low sludge application rate. Whereas, only the leachability of two metals was influenced by the lowest pH (pH 3) when sludge applied was increased. Besides pH of leachant, it appeared that leachability of elements from the soil column depended on rate of sludge applied, the particular metal, and metal form or fraction. The soil studied had organic matter, CEC, pH, clay content, etc., that resulted in high buffering capacity, which favors metal retention. Less than 0.5 and 1.8% of the added Cu and Zn applied at the 150 and 300 kgN/ha application rates, respectively, were detected in the leachate. Approximately 100% of the added Cu and Zn in the sludge remained in the surface 10 cm at each sludge application rate. Sequential extraction of sludge-amended soil following leaching (at the high sludge application rate) revealed that most of the Cu remained in the surface sludge-amended soil layer (0-2 cm depth) in the form of organic and residual Cu fractions that are not easily mobilized. An exchangeable fraction of Zn increased, approximately representing 60% total Zn applied in sludge-soil layer as compared with its native soil Zn fractions. These results demonstrate that Zn availability in the soil would increase as a result of sludge application. However, the total Zn in the leachate is safe for agricultural use, because it represents an amount of less than 2% of total Zn applied.


Asunto(s)
Metales Pesados/química , Aguas del Alcantarillado/química , Contaminantes del Suelo/análisis , Agricultura , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Solubilidad , Tailandia , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...