Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 202: 116231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554685

RESUMEN

Microplastic (MP) pollution poses a global concern, especially for benthic invertebrates. This one-month study investigated the accumulation of small MP polymers (polypropylene and polyester resin, 3-500 µm, 250 µg L-1) in benthic invertebrates and on one alga species. Results revealed species-specific preferences for MP size and type, driven by ingestion, adhesion, or avoidance behaviours. Polyester resin accumulated in Mytilus galloprovincialis, Chamelea gallina, Hexaplex trunculus, and Paranemonia cinerea, while polypropylene accumulated on Ulva rigida. Over time, MP accumulation decreased in count but not size, averaging 6.2 ± 5.0 particles per individual after a month. MP were mainly found inside of the organisms, especially in the gut, gills, and gonads and externally adherent MP ranged from 11 to 35 % of the total. Biochemical energy assessments after two weeks of MP exposure indicated energy gains for water column species but energy loss for sediment-associated species, highlighting the susceptibility of infaunal benthic communities to MP contamination.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Microplásticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos , Ecosistema
2.
Sci Total Environ ; 795: 148859, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328918

RESUMEN

The paper reports the results obtained after 4 years of aquatic angiosperm transplants in areas of the Venice Lagoon (North Adriatic Sea, Mediterranean) where meadows almost disappeared due to eutrophication, pollution and overexploitation of clam resources. The project LIFE12 NAT/IT/000331-SeResto, funded by the European Union, allowed to recolonize the Habitat 1150* (coastal lagoons) in the northernmost part of the lagoon, by extensive manual transplants of small sods or single rhizomes of Zostera marina, Zostera noltei, Ruppia cirrhosa and, in some stations also of Cymodocea nodosa. Over the 4 years of the project more than 75,000 rhizomes were transplanted in 35 stations with the support of local stakeholders (fishermen, hunters and sport clubs). Plants took root in 32 stations forming extensive meadows on a surface of approx. 10 km2 even if some failures were recorded in areas affected by outflows of freshwater rich in nutrients and suspended particulate matter. The rapid recovery of the ecological status of the involved areas was the result of this meadow restoration, which was in compliance with Water Framework Directive (WFD 2000/60/EC) objectives. Moreover, the monitoring of environmental parameters in the water column and in surface sediments allowed to identify the best conditions for successful transplants. Small, widespread interventions and the participation of local stakeholders in the environmental recovery, make this action economically cheap and easily transposable in other similar environments.


Asunto(s)
Restauración y Remediación Ambiental , Magnoliopsida , Ecosistema , Monitoreo del Ambiente , Agua
3.
Microorganisms ; 8(11)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114532

RESUMEN

Seaweeds are a group of essential photosynthetic organisms that harbor a rich diversity of associated microbial communities with substantial functions related to host health and defense. Environmental and anthropogenic stressors may disrupt the microbial communities and their metabolic activity, leading to host physiological alterations that negatively affect seaweeds' performance and survival. Here, the bacterial communities associated with one of the most common seaweed, Ulva laetevirens Areshough, were sampled over a year at three sites of the lagoon of Venice affected by different environmental and anthropogenic stressors. Bacterial communities were characterized through Illumina sequencing of the V4 hypervariable region of 16S rRNA genes. The study demonstrated that the seaweed associated bacterial communities at sites impacted by environmental stressors were host-specific and differed significantly from the less affected site. Furthermore, these communities were significantly distinct from those of the surrounding seawater. The bacterial communities' composition was significantly correlated with environmental parameters (nutrient concentrations, dissolved oxygen saturation, and pH) across sites. This study showed that several more abundant bacteria on U. laetevirens at stressed sites belonged to taxa related to the host response to the stressors. Overall, environmental parameters and anthropogenic stressors were shown to substantially affect seaweed associated bacterial communities, which reflect the host response to environmental variations.

4.
Heliyon ; 5(11): e02876, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31844749

RESUMEN

Coral-associated microbial communities contribute to a wide variety of useful roles regarding the their host, and therefore, the arrangement of the general microbiome network can emphatically impact coral wellbeing and survival. Various pollution sources can interfere and disrupt the microbial relationship with corals. Here, we adopted the bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP®) technique to investigate the shift of microbial communities associated with the mucus of the coral Stylophora pistillata collected from five sites (Marine Science Station, Industrial Complex, Oil Terminal, Public Beach, and Phosphate Port) along the Gulf of Aqaba (Red Sea). Our results revealed a high diversity in bacterial populations associated with coral mucus. Proteobacteria were observed to be the dominating phylum among all sampling sites. The identified bacterial taxa belong to the pathogenic bacteria from the genus Vibrio was presented in varying abundances at all sampling sites. Diversity and similarity analysis of microbial communists based on rarefaction curve and UniFrac cluster respectively demonstrated that there are variances in microbial groups associated with coral mucus along sites. The pollution sources among different locations along the Gulf of Aqaba seem to affect the coral-associated holobiont leading to changes in bacterial populations due to increasing human activities.

5.
Environ Int ; 131: 104942, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31491810

RESUMEN

The acute toxicity of citrate capped silver nanoparticles (AgNP) and silver nitrate was evaluated on the marine macroalga Ulva rigida C. Agardh (1823). Silver bioaccumulation, ultrastructural chloroplast damages verified by TEM microscopy, inhibition of primary production, neutral lipid production and oxidative stress were observed after 24 h of exposure to AgNP. The toxic effects of silver nitrate in artificial seawater started from a concentration of 0.05 ppm and was more toxic than AgNP that produced effects from a concentration of 0.1 ppm. However only AgNP induced lipid peroxidation in U. rigida. The addition of natural organic and inorganic ligands, represented by transparent exopolymer particles (TEP) and clay, drastically reduced AgNP acute toxicity in a ratio AgNP:ligand of 1:100 and 1:200, respectively. The findings suggest a marked toxicity of Ag on marine macroalgae which however should be mitigated by the high natural ligand concentrations of the transitional environments.


Asunto(s)
Nanopartículas del Metal/toxicidad , Nitrato de Plata/toxicidad , Plata/toxicidad , Ulva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Relación Dosis-Respuesta a Droga , Ligandos , Agua de Mar/química , Algas Marinas/efectos de los fármacos , Algas Marinas/fisiología , Ulva/fisiología
6.
Germs ; 8(4): 191-198, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30775338

RESUMEN

INTRODUCTION: Detection of new Actinobacteria is significant to discover new antibiotics because development of new antibiotics is connected to the characterization of novel bacterial taxa. This study has focused on the identification and isolation of antibiotic-producing Actinobacteria from the sediment and the water of Ma'in thermal springs (48-59°C) situated in the center area of Jordan. METHODS: Samples of sediment and water were transferred to glucose yeast malt agar medium and Actinobacteria were cultivated, isolated and identified according to scanning electron microscopy and 16S rRNA gene analysis. Antibacterial activities of the isolates were then tested against different test bacteria by agar well diffusion method. RESULTS: Three different species of Actinobacteria were isolated (M1-1, M2-2, M3-2) from sediment samples. Based on 16S rRNA gene analysis, isolate M1-1 was found to have only 90% identity percentage with Nocardiopsis sp., however, isolates M2-2 and M3-2 were found to be closely related Streptomyces sp. (97%) and Nocardioides luteus (99%), respectively. The antibacterial activity showed that strain M1-1 is active against P. aeruginosa ATCC 2785 (inhibition zone, 9 mm). Strain M2-2 was found to be active against S. aureus ATCC 29213 (12 mm), B. cereus ATCC 11778 (11 mm), and E. coli ATCC 25922 (9 mm). In respect to strain M3-2, it was found to be active against S. aureus ATCC 29213 (14 mm) and B. cereus ATCC 11778 (9 mm). There were no actinobacterial isolates obtained from water samples despite their significant diversity revealed by our previous metagenomic analysis, which showed the presence of 13 different species dominated by Arthrobacter (an Actinobacterium belonging to family Actinomycetales). CONCLUSION: There were 17 different Actinobacteria that could be detected in Ma'in thermal springs (13 unculturable species and 3 culturable species). The culturable Actinobacteria were found to have some antimicrobial activity. Further chemical analysis of the bioactive compounds is recommended.

7.
Microbiologyopen ; 6(6)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28799297

RESUMEN

A culture-independent approach was utilized in this study to reveal the microbial diversity in Jordanian hot springs represented by Ma'in and Afra hot springs. Water samples from Ma'in and Afra hot springs were collected in June 2015. The in situ temperature of water samples range was 38-59°C and the pH range was 7.4-8.4. The metagenome was extracted and analyzed using the next generation technology (bTEFAP® ). A total of 314,310 sequences were parsed and 288,452 were then clustered. The sequences were predominated by bacteria (>84%) and the relative abundance of archaea in each sample was <1%. Eukaryotic microorganisms were detected but with varying abundances (0.6%-15%). Because most of the detected sequences were found to belong to the domain of bacteria (196,936 sequences out 288,452), the bacterial sequences were utilized for further microbial analyses. With respect to alpha and beta diversity, samples were rarefied to 30,000 sequences and bootstrapped at 10,000 sequences. The Shannon-Wiener Index curve plot reaches a plateau at approximately 3,000 sequences indicating that sequencing depth was sufficient to capture the full scope of microbial diversity. By examining the relative abundance of phyla detected in each sample, it appears that the biota of both Jordanian hot springs sampled are compositionally similar, with over 50% of the microbial community of each sample being comprised of the phylum Proteobacteria. The second most abundant phylum was the phylum Bacteroidetes which represents more than 13% in each sample. The phylum Firmicutes was also detected with a significant abundance. However, lower abundance of Deinococcus, Verrucomicrobia, Planctomycetes, and Chloroflexi was detected. A principal coordinate analysis plot was generated based upon the weighted UniFrac distance matrix. By utilizing Monte Carlo simulations, we were able to determine that there were no significant differences in the microbial diversity between each sample.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Biodiversidad , Manantiales de Aguas Termales/microbiología , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Manantiales de Aguas Termales/química , Concentración de Iones de Hidrógeno , Jordania , Metagenoma , Metagenómica , Filogenia
8.
J Infect Public Health ; 10(6): 789-793, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28214187

RESUMEN

Ma'in hot springs are known as sites of balneotherapy. However, little is known about their microbiology and chemistry. In this study, we aim at evaluating the antimicrobial activity of Ma'in hot-springs water (MHSW), studying its microbiology, and determining its physicochemical properties including the heavy metals content. Therefore, water samples were collected from Ma'in hot springs and tested for antimicrobial activity using agar diffusion method. Water was then cultivated on nutrient agar to isolate and identify the dominant bacteria by chemical and molecular methods. The identified strains were tested by cross streak method to evaluate their antimicrobial activity against different clinical and standard strains. Finally, water samples were chemically analyzed and the heavy-metals content was assessed. Results revealed that MHSW was not active against any of the clinical isolates. Nevertheless, MHSW was found to be active against five standard bacterial strains, namely, Staphylococcus epidermidis ATCC 12228 (inhibition zone: 20mm), Staphylococcus aureus ATCC 29213 (inhibition zone: 19mm), Micrococcus luteus ATCC 9341 (inhibition zone: 15.3mm), and Bacillus cereus ATCC 11778 (inhibition zone: 12.3mm). After cultivation of MHSW, five bacterial isolates were obtained and identified based on 16S rRNA gene analysis as new strains of Anoxybacillus flavithermus (identity percentage ranges between 96-99%). Physicochemical analysis revealed that the in situ temperature was 59°C, pH was 7.8, salinity was 1.6ppt, and dissolved oxygen was 3.8mgl-1. In respect to heavy-metals content in MHSW, the following metals were present in the order: Cr (0.571ppm)>Mn(0.169ppm)>Fe (0.124ppm)>Zn (0.095)>Cu(0.070ppm)>Ni(0.058ppm)>Cd (0.023ppm)>Pb (0ppm). Cd, Cr, Ni and Mn were found to be higher than permissible levels set by international organizations and countries. This study highlights new chemical and microbiological data about Ma'in hot springs.


Asunto(s)
Antiinfecciosos/análisis , Bacterias/clasificación , Bacterias/aislamiento & purificación , Manantiales de Aguas Termales/química , Manantiales de Aguas Termales/microbiología , Metales Pesados/análisis , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Jordania , Pruebas de Sensibilidad Microbiana , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA