Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Med Entomol ; 61(1): 121-131, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37742046

RESUMEN

Mortality imposed on a population can interact with negatively density-dependent mortality to produce overcompensation, wherein added mortality results in more survivors. Experimental mortality can cause overcompensation in mosquito larvae, which would be counterproductive if it resulted from mosquito control in nature. We tested for different demographic responses to mortality among 3 container Aedes species when impacted by density dependence. We imposed 48.2% mortality on cohorts of larvae 2, 6, or 8 days after hatching and compared adult production, development times, and female size to those variables for controls without mortality. Mortality significantly increased adult production compared to controls, but the 3 species varied in the details of that response. Aedes albopictus (Skuse) produced more adults with mortality on day 2 primarily because of greater production of males. Aedes triseriatus (Say) yielded more adults with mortality on day 2 primarily because of greater production of females. Aedes aegypti (L.) adult production was not significantly affected by mortality, but development times for both sexes were significantly shorter with mortality on day 8. There were no effects of mortality on female wing length. None of our mortality treatments yielded significant reductions of adults for any species. These species responses to mortality are not the same, despite their similar ecologies and life histories. Thus, we cannot assume that killing almost half the larvae present in a dense population will reduce adult production, nor can we assume that different Aedes species will respond to mortality in the same way.


Asunto(s)
Aedes , Masculino , Animales , Femenino , Larva , Aedes/fisiología , Ecología , Demografía
2.
Sci Rep ; 12(1): 8075, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577868

RESUMEN

Understanding the relationship of population dynamics to density is central to many ecological investigations. Despite the importance of density-dependence in determining population growth, the empirical relationship between density and per capita growth remains understudied in most systems and is often assumed to be linear. In experimental studies of interspecific competition, investigators often evaluate the predicted outcomes by assuming such linear relationships, fitting linear functions, and estimating parameters of competition models. In this paper, we experimentally describe the shape of the relationship between estimated population rate of change and initial density using laboratory-reared populations of three mosquito species. We estimated per capita growth rate for these experimental populations over a 30-fold range of larval densities at a standard resource abundance. We then compared fits of linear models and several different nonlinear models for the relationship of estimated rate of change and density. We find that that the relationship between density and per capita growth is strongly non-linear in Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), and Aedes triseriatus (Say) mosquitoes. Components of population growth (survivorship, development time, adult size) are also nonlinearly related to initial density. The causes and consequences of this nonlinearity are likely to be important issues for population and community ecology.


Asunto(s)
Aedes , Animales , Larva , Densidad de Población , Dinámica Poblacional
3.
Insects ; 14(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36661946

RESUMEN

Population density can affect survival, growth, development time, and adult size and fecundity, which are collectively known as density-dependent effects. Container Aedes larvae often attain high densities in nature, and those densities may be reduced when larval control is applied. We tested the hypothesis that density-dependent effects on survival are common and strong in nature and could result in maximal adult production at intermediate densities for Aedes aegypti, Aedes albopictus, and Aedes triseriatus. We surveyed naturally occurring densities in field containers, then introduced larvae at a similar range of densities, and censused the containers for survivors. We analyzed the survival-density relationships by nonlinear regressions, which showed that survival-density relationships vary among seasons, sites, and species. For each Aedes species, some sites and times yielded predictions that larval density reduction would yield the same (compensation), or more (overcompensation), adults than no larval density reduction. Thus, larval control targeting these Aedes species cannot always be assumed to yield a reduction in the number of adult mosquitoes. We suggest that mosquito control targeting larvae may be made more effective by: Imposing maximum mortality; targeting populations when larval abundances are low; and knowing the shape of the survival-density response of the target population.

4.
PLoS Negl Trop Dis ; 15(11): e0009984, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34843477

RESUMEN

Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susceptibility and host responses of two important mosquito vectors, Ae. albopictus and Cx. pipiens, that naturally carry Wolbachia, to infections by entomopathogenic fungi. Our study indicated that while Wolbachia presence did not provide a protective advantage against entomopathogenic fungal infection, it nevertheless influenced the bacterial / fungal load and the expression of select anti-microbial effectors and phenoloxidase cascade genes in mosquitoes. Furthermore, although host responses from Ae. albopictus and Cx. pipiens were mostly similar, we observed contrasting phenotypes with regards to susceptibility and immune responses to fungal entomopathogenic infection in these two mosquitoes. This study provides new insights into the intricate multipartite interaction between the mosquito host, its native symbiont and pathogenic microbes that might be employed to control mosquito populations.


Asunto(s)
Aedes/inmunología , Culex/inmunología , Inmunidad/genética , Mosquitos Vectores/inmunología , Wolbachia/genética , Aedes/efectos de los fármacos , Aedes/genética , Aedes/microbiología , Animales , Culex/efectos de los fármacos , Culex/genética , Culex/microbiología , Hongos , Expresión Génica , Resistencia a los Insecticidas , Insecticidas , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , Mosquitos Vectores/microbiología , Simbiosis , Enfermedades Transmitidas por Vectores
5.
Ecology ; 102(10): e03452, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34165788

RESUMEN

Parasite dilution occurs in varied systems, via multiple potential mechanisms. We used laboratory manipulation and field surveys to test for invader-induced parasite dilution via two specific mechanisms: host-host competition and encounter reduction. In the laboratory, single Aedes triseriatus larvae were exposed to one of eight combinations of: parasitic Ascogregarina barretti, +/-1 cohabiting Aedes albopictus larva during parasite exposure, and +/-1 cohabiting A. albopictus larva after infectious parasite removal. Larval infection intensity (predicted to decrease via dilution by encounter reduction) was not significantly affected by A. albopictus. Adult infection prevalence and intensity (predicted to decrease via dilution by host-host competition) were significantly greater with A. albopictus, suggesting parasite amplification by interspecific competition, an effect potentially mediated by competition increasing A. triseriatus development time. In the field, we tested for effects of potential dilution host abundances on prevalence and abundance of A. barretti in A. triseriatus larvae. Piecewise path analysis yielded no evidence of host-host competition impacting parasitism in the field, but instead indicated a significant direct negative effect of Aedes spp. abundance on parasite abundance in A. triseriatus, which is consistent with dilution via encounter reduction in the field, but only in tree holes, not in man-made containers. Our results are consistent with the hypothesis that a noncompetent invader can alter the native host-parasite relationship, but our laboratory and field data yield differing results. This difference is likely due to laboratory experiment testing for per capita effects of dilution hosts on parasitism, but field analysis testing for effects of dilution host abundance on parasitism. Individually, host-host competition with the invader amplifies, rather than dilutes, parasite success. In contrast, our path analysis is consistent with the hypothesis that dilution of parasitism results from increased abundance of noncompetent hosts in the field.


Asunto(s)
Aedes , Apicomplexa , Interacciones Huésped-Parásitos , Aedes/parasitología , Animales , Especies Introducidas , Larva
6.
Ecol Entomol ; 46(1): 56-65, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34092899

RESUMEN

1. Population responses to extrinsic mortality can yield no change in number of survivors (compensation) or an increase in number of survivors (overcompensation) when the population is regulated by negative density-dependence. This intriguing response has been the subject of theoretical studies, but few experiments have explored how the source of extrinsic mortality affects the response. 2. This study tests abilities of three functionally diverse predators, alone and combined, to induce (over)compensation of a prey population. Larval Aedes aegypti (Diptera: Culicidae) were exposed to predation by Mesocyclops longisetus (Crustacea: Copepoda), Anopheles barberi (Diptera: Culicidae), Corethrella appendiculata (Diptera: Corethrellidae), all three in a substitutive design, or no predation. 3. The number of survivors to adulthood, female size and development time, and a composite index of performance (r') were analysed. Predator treatment did not have a significant effect on total number of survivors, nor on number of males, suggesting mortality by predation was compensatory. Predation significantly affected number of female survivors, with a trend of more females produced with predation, though no post hoc tests were significant. Predation significantly increased female development rate and r' relative to no-predator control. 4. A sensitivity analysis indicated that the change in the number of female adults produced was the largest contributing factor to the differences in r' among cohorts. While predation did not significantly increase overall production of adults, it did release survivors from density-dependent effects sufficiently to increase population performance. This study provides an empirical test of mechanisms by which predation may yield positive effects on a population of victims, a phenomenon predicted to occur across many taxa and food webs.

7.
J Med Entomol ; 58(2): 950-955, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33073848

RESUMEN

Aedes albopictus (Skuse) (Diptera: Culicidae) is one of the most invasive species globally, and has led to rapid declines and local extirpations of resident mosquitoes where it becomes established. A potential mechanism behind these displacements is the superior competitive ability of Ae. albopictus in larval habitats. Research on the context-dependent nature of competitive displacement predicts that Ae. albopictus will not replace native Aedes triseriatus (Say) (Diptera: Culicidae) in treeholes but could do so in artificial container habitats. Aedes albopictus remains rare in temperate treeholes but less is known about how Ae. albopictus fares in artificial containers in forests. Tyson Research Center (TRC) is a field station composed of mostly oak-hickory forest located outside Saint Louis, MO. The container community has been studied regularly at TRC since 2007 with permanently established artificial containers on the property since 2013. Aedes albopictus was detected each year when these communities were sampled; however, its abundance remains low and it fails to numerically dominate other species in these communities. We present data that show Ae. albopictus numbers have not increased in the last decade. We compare egg counts from 2007 to 2016 and combine larval sample data from 2012 to 2017.We present average larval densities and prevalence of Ae. albopictus and two competitors, Ae. triseriatus and Aedes japonicus (Theobald) (Diptera: Culicidae), as well as monthly averages by year. These data highlight a circumstance in which Ae. albopictus fails to dominate the Aedes community despite it doing so in more human-impacted habitats. We present hypotheses for these patterns based upon abiotic and biotic environmental conditions.


Asunto(s)
Aedes/fisiología , Especies Introducidas , Animales , Ecosistema , Bosques , Larva/fisiología , Densidad de Población
8.
Ecosphere ; 10(9)2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31803516

RESUMEN

Extrinsic mortality impinging on negatively density-dependent populations can result in no change in the number of survivors (compensation) or an increase (overcompensation) by releasing the population from density-dependent effects on survivorship. The relationship between the level of extrinsic mortality (i.e., percentage of mortality) and the level and likelihood of overcompensation is theoretically important, but rarely investigated. We tested the hypothesis that overcompensation occurs below a threshold value of extrinsic mortality that is related to density-dependent mortality rate, and that additive extrinsic mortality occurs above this threshold. This hypothesis predicts that survivorship vs. extrinsic mortality will: 1) be best described by a two-segmented model with a threshold; 2) have a slope >0 below the threshold; and 3) have a slope=-1 above the threshold. We also tested whether mortality imposed by real predators and random harvest have equivalent effects on adult production, and whether magnitude of overcompensation is related to species sensitivity to density-dependence. These hypotheses were tested in the container mosquitoes Aedes aegypti, A. albopictus, A. triseriatus, and Culex pipiens (Diptera: Culicidae). Cohorts of 150 larvae were exposed to random harvest of 0-70% two days after hatch or to predation by 1-3 Mesocyclops longisetus (Crustacea: Copepoda). Overcompensation occurred in A. aegypti in a pattern consistent with predictions. Aedes triseriatus showed strong overcompensation but no evidence of a threshold, whereas A. albopictus and C. pipiens had survival consistent with compensatory mortality but no evidence of a threshold. Compared to random harvest, mortality from predation yielded greater adult production in A. aegypti and A. albopictus, lesser adult production in C. pipiens, and no difference in adult production in A. triseriatus. Our results are largely consistent with our hypothesis about overcompensation, with the caveat that thresholds for additive mortality appear to occur at very high levels of extrinsic mortality. Magnitudes of overcompensation for the three Aedes were inversely related to survival in the 0% mortality treatment, consistent with our hypothesis that overcompensation is related to sensitivity to density-dependence. A broad range of extrinsic mortality levels can yield overcompensation, which may have practical implications for attempts to control pest populations.

9.
Ecol Entomol ; 44(2): 197-205, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31178624

RESUMEN

1. We investigated the effects of strong density-dependence on larval growth, development, and survival of the mosquito Culex restuans (Theobald). We tested the hypothesis that density reduction early in larval development could result in as many or more individuals surviving to adulthood (compensation or overcompensation, respectively), or increased reproductive performance via rapid development and greater adult size. 2. In a field study of a natural population of C. restuans we tested for the effects of a 75% lower density on percent survivorship to adulthood, number of adults, development time, adult size, adult longevity, and size dependent fecundity. 3. We found no evidence for compensation or overcompensation in adult production, nor for effects of lower density on percent survivorship. Low density yielded significant increases in adult size, adult longevity, and size-dependent fecundity, and a decrease in development time. 4. Estimated per capita population growth rate was significantly greater in the low-density treatment than in the high-density treatment. We infer this difference resulted from greater per capita resources increasing female size and fecundity, and reducing development time. Greater per capita population growth could therefore result from early mortality of larvae, meaning that the hydra effect, which predicts greater equilibrium population with, as opposed to without, extrinsic mortality, may be possible for these mosquitoes.

10.
Front Ecol Evol ; 72019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31218216

RESUMEN

Non-lethal, trait-mediated effects of predation impact prey behavior and life-history traits. Studying how these effects in turn influence prey demography is crucial to understand prey life-history evolution. Mosquitoes are important vectors that claim several million lives every year worldwide by transmitting a range of pathogens. Several ecological factors affect life-history traits of both larval and adult mosquitoes, creating effects that cascade to population-level consequences. Few studies have comprehensively explored the non-lethal effects of predation and its interactions with resources and competition on larval, adult, and population traits of mosquitoes. Understanding these interactions is important because the effects of predation are hypothesized to rescue prey populations from the effects of density-dependence resulting from larval competition. Aedes aegypti larvae reared at two different larval densities and subjected to three non-lethal predator treatments were monitored for survival, development time, and adult size through the larval stages to adult eclosion, and adult females were monitored for survival and reproduction through their first gonotrophic cycle. Intraspecific competition increased larval development time, yielded small-bodied adults, and reduced fecundity in individuals exposed to predatory chemical cues as larvae. Exposure to cues from a living predator affected both body size and latency to blood feed in females. Analysis of life-table traits revealed significant effects of competition on net reproductive rate (R 0) of mosquitoes. The interaction between competition and predator treatments significantly affected the cohort rate of increase (r) and the index of performance (r'). The index of performance, which estimates rate of population change based on the size-fecundity relationship, was significantly and positively correlated with r, but overestimated r slightly. Lack of significant effect of predator treatments and larval density on cohort generation time (T c) further suggests that the observed effects of treatments on r and r' were largely a consequence of the effects on R 0. Also, the significant effects of treatment combinations on larval development time, adult body size and fecundity were ultimately manifested as effects on life-table traits estimated from adult survival and reproduction.

11.
Ecol Evol ; 9(7): 3794-3806, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31015967

RESUMEN

Predators alter prey populations via direct lethality (density-mediated effects), but in many taxa, the indirect nonlethal threat of predation may be almost as strong an effect, altering phenotypically plastic traits such as prey morphology, behavior, and life history (trait-mediated effects). There are costs to antipredator defenses and the strength of prey responses to cues of predation likely depends on both the perceived level of risk and food availability.The goal of this study was to test the hypothesis that the costs of nonlethal trait-mediated interactions impacting larvae can have carryover effects that alter life-history traits, adult characteristics, and ultimately population dynamics.The effects of Toxorhynchites rutilus kairomones and chemical alarm cues on Aedes triseriatus were assessed in a two-level factorial design manipulating nutrient level (low or high) and chemical cues of predation (present or absent).Nonlethal chemical cues of predation significantly decreased female survivorship and significantly decreased female size. Females emerged as adults significantly earlier when exposed to predation cues when there was high nutrient availability. When raised in the low nutrient treatment and exposed to predator cues, adult females had 2.1 times the hazard of death compared to high nutrient-no predator cues. Females raised in the high nutrient and predator cue treatment blood fed sooner than did females from other combinations.Fear of predation can substantially alter prey life-history traits and behavior, which can cascade into dramatic population, community, and ecosystem effects. Exposure to predator cues significantly decreased the estimated cohort rate of increase, potentially altering the expected population density of the next generation.

13.
J Med Entomol ; 56(2): 320-328, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30668785

RESUMEN

We tested the effect of the native container-dwelling predator Toxorhynchites rutilus on the codominant container-dwelling mosquitoes: native Aedes triseriatus and invasive Aedes japonicus. We established two predator treatments (predator, no predator) by removing T. rutilus from all containers, and stocking T. rutilus larvae (1/3.5 liters) in the predator treatment. Removal and stocking was repeated every 3 d and established significantly different predator abundances in both large and small containers. Repeated-measures analysis of variance (ANOVA) on standard samples showed larvae+pupae/liter of A. japonicus was greater without versus with predation, and this difference increased across samples. In contrast, repeated-measures ANOVA showed larvae+pupae/liter of A. triseriatus was statistically indistinguishable for predation treatments and was greater in small versus large containers. Thus, predation reduced invasive A. japonicus while having no detectable effect on A. triseriatus larvae and pupae. A final destructive census of pupae showed that predation reduced pupae/liter of both species, but this effect was greater and more consistent across container sizes for A. japonicus. Predator effects on abundances were not products of the nonlethal effect of predator avoidance by ovipositing females, as T. rutilus presence did not lead to reduced egg inputs by either Aedes, nor by Aedes spp. as a group. Effects of predation thus are best explained by differential success of developing larvae due to the greater lethal effect of T. rutilus on A. japonicus than on A. triseriatus. Thus, this system is consistent with the hypothesis that native predators can limit success and potential impacts of invasive mosquitoes.


Asunto(s)
Culicidae , Especies Introducidas , Animales , Femenino , Larva , Oviposición , Conducta Predatoria , Pupa
14.
Biol Invasions ; 20(8): 1913-1929, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30220875

RESUMEN

The vector mosquitoes Aedes aegypti (L.), native to Africa, and Aedes albopictus (Skuse), native to Asia, are widespread invasives whose spatial distributions frequently overlap. Predictive models of their distributions are typically correlative rather than mechanistic, and based on only abiotic variables describing putative environmental requirements despite extensive evidence of competitive interactions leading to displacements. Here we review putative roles of competition contributing to distribution changes where the two species meet. The strongest evidence for competitive displacements comes from multiple examples of habitat segregation where the two species co-occur and massive reductions in the range and abundance of A. aegypti attributable to A. albopictus invasions in the southeastern U.S.A. and Bermuda (U.K). We summarize evidence to support the primacy of asymmetric reproductive interference, or satyrization, and larval resource competition, both favoring A. albopictus, as displacement mechanisms. Where evidence of satyrization or interspecific resource competition is weak, differences in local environments or alternative ecologies or behaviors of these Aedes spp. may explain local variation in the outcomes of invasions. Predictive distribution modeling for both these major disease vectors needs to incorporate species interactions between them as an important process that is likely to limit their realized niches and future distributions. Experimental tests of satyrization and resource competition are needed across the broad ranges of these species, as are models that incorporate both reproductive interference and resource competition to evaluate interaction strengths and mechanisms. These vectors exemplify how fundamental principles of community ecology may influence distributions of invasive species.

15.
Ecology ; 99(7): 1660-1670, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29722433

RESUMEN

Overcompensation occurs when added mortality increases survival to the next life-cycle stage. Overcompensation can contribute to the Hydra effect, wherein added mortality increases equilibrium population size. One hypothesis for overcompensation is that added mortality eases density dependence, increasing survival to adulthood ("temporal separation of mortality and density dependence"). Mortality early in the life cycle is therefore predicted to cause overcompensation, whereas mortality later in the life cycle is not. Another hypothesis for overcompensation is that threat of mortality (e.g., from predation) causes behavioral changes that reduce overexploitation of resources, allowing resource recovery, and increasing production of adults ("prudent resource exploitation"). Behaviorally active predation cues alone are therefore predicted to cause overcompensation. We tested these predictions in two experiments with larvae of two species of Aedes. As predicted, early mortality yielded greater production of adults, and of adult females, and greater estimated rate of population increase than did later mortality. Addition of water-borne predation cues usually reduced browsing on surfaces in late-stage larvae, but contrary to prediction, resulted in neither significantly greater production of adult mosquitoes nor significantly greater estimated rate of increase. Thus we have strong evidence that timing of mortality contributes to overcompensation and the Hydra effect in mosquitoes. Evidence that predation cues alone can result in overcompensation via prudent resource exploitation is lacking. We expect the overcompensation in response to early mortality will be common in organisms with complex life cycles, density dependence among juveniles, and developmental control of populations.


Asunto(s)
Aedes , Animales , Femenino , Larva , Estadios del Ciclo de Vida , Densidad de Población , Conducta Predatoria
16.
PLoS One ; 13(2): e0192104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29401513

RESUMEN

Predation impacts development, behavior and morphology of prey species thereby shaping their abundances, distribution and community structure. Non-lethal threat of predation, specifically, can have a strong influence on prey lifehistory characteristics. While investigations often focus on the impact of predation threat on prey in isolation, tests of its interactive effects with food availability and resource competition on prey survival and fitness can improve understanding of costs, benefits and trade-offs of anti-predator strategies. This study, involving Aedes aegypti mosquitoes as a model organism, investigates both simple and interactive effects of predation threat during the larval stage on survival, size at and time to maturity, stored teneral reserves of glycogen, protein and lipid in adults, and adult longevity. Our results show that development times of mosquito larvae were increased (by 14.84% in males and by 97.63% in females), and size of eclosing adults decreased (by 62.30% in males and by 58.33% in females) when exposed to lowered nutrition and elevated intraspecific competition, but that predation had no detectable effect on these simple traits. Teneral reserves of glycogen, protein and lipid and adult longevity were positively correlated with adult body size. Non-lethal predation threat had significant interactive effects with nutrition and larval competition on teneral reserves in males and adult longevity in males and females. The sexes responded differently to conditions encountered as larvae, with the larval environment affecting development and adult characteristics more acutely for females than for males. The outcome of this study shows how threat of predation on juveniles can have long-lasting effects on adults that are likely to impact mosquito population dynamics and that may impact disease transmission.


Asunto(s)
Culicidae/crecimiento & desarrollo , Larva/fisiología , Conducta Predatoria , Animales , Composición Corporal , Culicidae/fisiología , Femenino , Longevidad , Masculino
17.
J Med Entomol ; 55(2): 360-369, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29194537

RESUMEN

A growing body of literature on mosquito oviposition behavior supports the hypothesis that females place eggs in habitats that provide best available opportunity for growth, development, and maturation of their offspring. We conducted a field experiment to evaluate Culex oviposition behavior in response to the interspecific competitor Aedes triseriatus (Say) (Diptera: Culicidae) larvae, and resources in the form of quantity of plant detritus, and dissolved nitrogen (TN) and phosphorus (TP) derived from that detritus. We tested a set of specific predictions: 1) As a poorer competitor, Culex will avoid ovipositing in containers with superior interspecific competitors; 2) Culex choose oviposition habitats that contain greater amount of resources for the microbial food of their offspring; 3) Sufficiently high resource abundance can override avoidance of oviposition in containers with interspecific competitors. Culex restuans Theobald (Diptera: Culicidae) was the only species ovipositing, and the oviposition responses changed over time. The effect of resources was more important in driving oviposition decisions at the beginning and end of the experiment. The amount of resources, as manifest by TN and TP concentrations, had differential effects on oviposition. At the beginning females laid more eggs in containers with low detritus, which had the highest TN. After that, females preferred those containers with high detritus, which had low TN and high TP. The effect of competitors was important only during the middle of the experiment. Paradoxically, even as a poorer competitor Cx. restuans preferentially oviposited in containers with late-instar Ae. triseriatus, suggesting that the presence of successful heterospecifics indicates a good quality larval habitat.


Asunto(s)
Culex/fisiología , Ecosistema , Oviposición , Aedes/crecimiento & desarrollo , Aedes/fisiología , Animales , Culex/crecimiento & desarrollo , Femenino , Larva/crecimiento & desarrollo , Larva/fisiología
18.
Ecol Entomol ; 42(4): 439-448, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28959086

RESUMEN

General theory from aquatic ecology predicts that smaller aquatic habitats have shorter hydroperiods favouring species that are better resource competitors and complete development quickly. Larger habitats are predicted to have longer hydroperiods enabling longer-lived predators to persist. Habitats with long hydroperiods and predators are predicted to favour slower-developing, predator resistant species, rather than competitive species.In a field experiment, we manipulated independently habitat size and hydroperiod in water-filled containers, to test these hypotheses about processes structuring aquatic communities. We used human-made containers that are dominated by mosquitoes that vary in desiccation resistance, competitive ability, and predation resistance.Habitat size and drying had significant effects on abundances of larvae of the common species in these communities. There was sorting of species by habitat size and by drying, with species that are better competitors relatively more abundant in smaller, more ephemeral habitats, and predator resistant, slower-developing species relatively more abundant in larger or permanently flooded habitats. There were no detectable effects of habitat size or drying on the dominant predator.Habitat size and its interaction with drying affected inputs of eggs to containers. Habitat size also affected relative abundances of the two dominant species in the egg population.Although habitat size and hydroperiod significantly affected composition of these communities, these impacts did not appear to be mediated through effects on predator abundance. Species specific differences in habitat size and drying regime preferences, and habitat-dependent larval performance appear to be the main forces shaping these communities.

19.
Ecol Entomol ; 42(6): 704-711, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29755180

RESUMEN

Per-capita resource availability in aquatic habitats is influenced directly by consumer density via resource competition and indirectly via delayed resource competition when temporally non-overlapping cohorts of larvae exploit the same resources. In detritus-based systems, resources are likely to be influenced by the age of the aquatic habitat, as detritus changes in quality over time and may be replenished by new inputs.For aquatic insects that exploit detritus-based habitats, feeding conditions experienced during immature stages can influence fitness directly via effects on development and survivorship, but also indirectly by influencing adult traits such as fecundity and longevity.Larval habitat age and prior resource exploitation were manipulated in a field experiment using the container mosquito Aedes triseriatus.It was found that A. triseriatus from older habitats had greater larval survival, faster development and greater adult longevity. Exploitation of larval habitats by a prior cohort of larvae had a significant negative effect on subsequent cohorts of larvae by delaying development.It is suggested that extended conditioning of detritus probably resulted in conversion of recalcitrant resources to more available forms which improved the quality of the habitat.In a parallel study, evidence was found of carry-over effects of habitat age and prior exploitation on adult longevity for A. triseriatus and Aedes japonicus collected from unmanipulated aquatic habitats.These results indicate the importance of detritus dynamics and the discontinuous nature of resource competition in these mosquito-dominated aquatic systems.

20.
J Pharmacol Exp Ther ; 359(3): 460-470, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27733628

RESUMEN

Modafinil (MOD) exhibits therapeutic efficacy for treating sleep and psychiatric disorders; however, its mechanism is not completely understood. Compared with other psychostimulants inhibiting dopamine (DA) uptake, MOD weakly interacts with the dopamine transporter (DAT) and modestly elevates striatal dialysate DA, suggesting additional targets besides DAT. However, the ability of MOD to induce wakefulness is abolished with DAT knockout, conversely suggesting that DAT is necessary for MOD action. Another psychostimulant target, but one not established for MOD, is activation of phasic DA signaling. This communication mode during which burst firing of DA neurons generates rapid changes in extracellular DA, the so-called DA transients, is critically implicated in reward learning. Here, we investigate MOD effects on phasic DA signaling in the striatum of urethane-anesthetized rats with fast-scan cyclic voltammetry. We found that MOD (30-300 mg/kg i.p.) robustly increases the amplitude of electrically evoked phasic-like DA signals in a time- and dose-dependent fashion, with greater effects in dorsal versus ventral striata. MOD-induced enhancement of these electrically evoked amplitudes was mediated preferentially by increased DA release compared with decreased DA uptake. Principal component regression of nonelectrically evoked recordings revealed negligible changes in basal DA with high-dose MOD (300 mg/kg i.p.). Finally, in the presence of the D2 DA antagonist, raclopride, low-dose MOD (30 mg/kg i.p.) robustly elicited DA transients in dorsal and ventral striata. Taken together, these results suggest that activation of phasic DA signaling is an important mechanism underlying the clinical efficacy of MOD.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Dopamina/metabolismo , Neostriado/citología , Neostriado/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Estimulación Eléctrica , Masculino , Modafinilo , Neostriado/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...