Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
PLoS One ; 19(5): e0302880, 2024.
Article En | MEDLINE | ID: mdl-38718092

Gastrointestinal (GI) cancer is leading general tumour in the Gastrointestinal tract, which is fourth significant reason of tumour death in men and women. The common cure for GI cancer is radiation treatment, which contains directing a high-energy X-ray beam onto the tumor while avoiding healthy organs. To provide high dosages of X-rays, a system needs for accurately segmenting the GI tract organs. The study presents a UMobileNetV2 model for semantic segmentation of small and large intestine and stomach in MRI images of the GI tract. The model uses MobileNetV2 as an encoder in the contraction path and UNet layers as a decoder in the expansion path. The UW-Madison database, which contains MRI scans from 85 patients and 38,496 images, is used for evaluation. This automated technology has the capability to enhance the pace of cancer therapy by aiding the radio oncologist in the process of segmenting the organs of the GI tract. The UMobileNetV2 model is compared to three transfer learning models: Xception, ResNet 101, and NASNet mobile, which are used as encoders in UNet architecture. The model is analyzed using three distinct optimizers, i.e., Adam, RMS, and SGD. The UMobileNetV2 model with the combination of Adam optimizer outperforms all other transfer learning models. It obtains a dice coefficient of 0.8984, an IoU of 0.8697, and a validation loss of 0.1310, proving its ability to reliably segment the stomach and intestines in MRI images of gastrointestinal cancer patients.


Gastrointestinal Neoplasms , Gastrointestinal Tract , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Gastrointestinal Neoplasms/diagnostic imaging , Gastrointestinal Neoplasms/pathology , Gastrointestinal Tract/diagnostic imaging , Semantics , Image Processing, Computer-Assisted/methods , Female , Male , Stomach/diagnostic imaging , Stomach/pathology
2.
Diagnostics (Basel) ; 13(19)2023 Oct 09.
Article En | MEDLINE | ID: mdl-37835895

Glomeruli are interconnected capillaries in the renal cortex that are responsible for blood filtration. Damage to these glomeruli often signifies the presence of kidney disorders like glomerulonephritis and glomerulosclerosis, which can ultimately lead to chronic kidney disease and kidney failure. The timely detection of such conditions is essential for effective treatment. This paper proposes a modified UNet model to accurately detect glomeruli in whole-slide images of kidney tissue. The UNet model was modified by changing the number of filters and feature map dimensions from the first to the last layer to enhance the model's capacity for feature extraction. Moreover, the depth of the UNet model was also improved by adding one more convolution block to both the encoder and decoder sections. The dataset used in the study comprised 20 large whole-side images. Due to their large size, the images were cropped into 512 × 512-pixel patches, resulting in a dataset comprising 50,486 images. The proposed model performed well, with 95.7% accuracy, 97.2% precision, 96.4% recall, and 96.7% F1-score. These results demonstrate the proposed model's superior performance compared to the original UNet model, the UNet model with EfficientNetb3, and the current state-of-the-art. Based on these experimental findings, it has been determined that the proposed model accurately identifies glomeruli in extracted kidney patches.

3.
Front Bioeng Biotechnol ; 11: 1257591, 2023.
Article En | MEDLINE | ID: mdl-37823024

The human brain is an extremely intricate and fascinating organ that is made up of the cerebrum, cerebellum, and brainstem and is protected by the skull. Brain stroke is recognized as a potentially fatal condition brought on by an unfavorable obstruction in the arteries supplying the brain. The severity of brain stroke may be reduced or controlled with its early prognosis to lessen the mortality rate and lead to good health. This paper proposed a technique to predict brain strokes with high accuracy. The model was constructed using data related to brain strokes. The aim of this work is to use Multi Layer Perceptron (MLP) as a classification technique for stroke data and used multi-optimizers that include Adaptive moment estimation with Maximum (AdaMax), Root Mean Squared Propagation (RMSProp) and Adaptive learning rate method (Adadelta). The experiment shows RMSProp optimizer is best with a data training accuracy of 95.8% and a value for data testing accuracy of 94.9%. The novelty of work is to incorporate multiple optimizers alongside the MLP classifier which offers a comprehensive approach to stroke prediction, providing a more robust and accurate solution. The obtained results underscore the effectiveness of the proposed methodology in enhancing the accuracy of brain stroke detection, thereby paving the way for potential advancements in medical diagnosis and treatment.

4.
Diagnostics (Basel) ; 13(7)2023 Apr 02.
Article En | MEDLINE | ID: mdl-37046538

Brain tumor diagnosis at an early stage can improve the chances of successful treatment and better patient outcomes. In the biomedical industry, non-invasive diagnostic procedures, such as magnetic resonance imaging (MRI), can be used to diagnose brain tumors. Deep learning, a type of artificial intelligence, can analyze MRI images in a matter of seconds, reducing the time it takes for diagnosis and potentially improving patient outcomes. Furthermore, an ensemble model can help increase the accuracy of classification by combining the strengths of multiple models and compensating for their individual weaknesses. Therefore, in this research, a weighted average ensemble deep learning model is proposed for the classification of brain tumors. For the weighted ensemble classification model, three different feature spaces are taken from the transfer learning VGG19 model, Convolution Neural Network (CNN) model without augmentation, and CNN model with augmentation. These three feature spaces are ensembled with the best combination of weights, i.e., weight1, weight2, and weight3 by using grid search. The dataset used for simulation is taken from The Cancer Genome Atlas (TCGA), having a lower-grade glioma collection with 3929 MRI images of 110 patients. The ensemble model helps reduce overfitting by combining multiple models that have learned different aspects of the data. The proposed ensemble model outperforms the three individual models for detecting brain tumors in terms of accuracy, precision, and F1-score. Therefore, the proposed model can act as a second opinion tool for radiologists to diagnose the tumor from MRI images of the brain.

5.
Front Comput Neurosci ; 16: 1000435, 2022.
Article En | MEDLINE | ID: mdl-36387304

Alzheimer's disease (AD) is a neurodegenerative ailment, which gradually deteriorates memory and weakens the cognitive functions and capacities of the body, such as recall and logic. To diagnose this disease, CT, MRI, PET, etc. are used. However, these methods are time-consuming and sometimes yield inaccurate results. Thus, deep learning models are utilized, which are less time-consuming and yield results with better accuracy, and could be used with ease. This article proposes a transfer learning-based modified inception model with pre-processing methods of normalization and data addition. The proposed model achieved an accuracy of 94.92 and a sensitivity of 94.94. It is concluded from the results that the proposed model performs better than other state-of-the-art models. For training purposes, a Kaggle dataset was used comprising 6,200 images, with 896 mild demented (M.D) images, 64 moderate demented (Mod.D) images, and 3,200 non-demented (N.D) images, and 1,966 veritably mild demented (V.M.D) images. These models could be employed for developing clinically useful results that are suitable to descry announcements in MRI images.

6.
Sensors (Basel) ; 22(21)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36365939

The objective of the present work is for assessing ergonomics-based IoT (Internet of Things) related healthcare issues with the use of a popular multi-criteria decision-making technique named the analytic hierarchy process (AHP). Multiple criteria decision making (MCDM) is a technique that combines alternative performance across numerous contradicting, qualitative, and/or quantitative criteria, resulting in a solution requiring a consensus. The AHP is a flexible strategy for organizing and simplifying complex MCDM concerns by disassembling a compound decision problem into an ordered array of relational decision components (evaluation criteria, sub-criteria, and substitutions). A total of twelve IoT-related ergonomics-based healthcare issues have been recognized as Lumbago (lower backache), Cervicalgia (neck ache), shoulder pain; digital eye strain, hearing impairment, carpal tunnel syndrome; distress, exhaustion, depression; obesity, high blood pressure, hyperglycemia. "Distress" has proven itself the most critical IoT-related ergonomics-based healthcare issue, followed by obesity, depression, and exhaustion. These IoT-related ergonomics-based healthcare issues in four categories (excruciating issues, eye-ear-nerve issues, psychosocial issues, and persistent issues) have been compared and ranked. Based on calculated mathematical values, "psychosocial issues" have been ranked in the first position followed by "persistent issues" and "eye-ear-nerve issues". In several industrial systems, the results may be of vital importance for increasing the efficiency of human force, particularly a human-computer interface for prolonged hours.


Analytic Hierarchy Process , Decision Making , Humans , Ergonomics , Delivery of Health Care , Obesity
7.
Sensors (Basel) ; 22(18)2022 Sep 06.
Article En | MEDLINE | ID: mdl-36146089

The industry-based internet of things (IIoT) describes how IIoT devices enhance and extend their capabilities for production amenities, security, and efficacy. IIoT establishes an enterprise-to-enterprise setup that means industries have several factories and manufacturing units that are dependent on other sectors for their services and products. In this context, individual industries need to share their information with other external sectors in a shared environment which may not be secure. The capability to examine and inspect such large-scale information and perform analytical protection over the large volumes of personal and organizational information demands authentication and confidentiality so that the total data are not endangered after illegal access by hackers and other unauthorized persons. In parallel, these large volumes of confidential industrial data need to be processed within reasonable time for effective deliverables. Currently, there are many mathematical-based symmetric and asymmetric key cryptographic approaches and identity- and attribute-based public key cryptographic approaches that exist to address the abovementioned concerns and limitations such as computational overheads and taking more time for crucial generation as part of the encipherment and decipherment process for large-scale data privacy and security. In addition, the required key for the encipherment and decipherment process may be generated by a third party which may be compromised and lead to man-in-the-middle attacks, brute force attacks, etc. In parallel, there are some other quantum key distribution approaches available to produce keys for the encipherment and decipherment process without the need for a third party. However, there are still some attacks such as photon number splitting attacks and faked state attacks that may be possible with these existing QKD approaches. The primary motivation of our work is to address and avoid such abovementioned existing problems with better and optimal computational overhead for key generation, encipherment, and the decipherment process compared to the existing conventional models. To overcome the existing problems, we proposed a novel dynamic quantum key distribution (QKD) algorithm for critical public infrastructure, which will secure all cyber-physical systems as part of IIoT. In this paper, we used novel multi-state qubit representation to support enhanced dynamic, chaotic quantum key generation with high efficiency and low computational overhead. Our proposed QKD algorithm can create a chaotic set of qubits that act as a part of session-wise dynamic keys used to encipher the IIoT-based large scales of information for secure communication and distribution of sensitive information.


Computer Security , Privacy , Algorithms , Communication , Confidentiality , Humans
8.
Front Oncol ; 12: 932496, 2022.
Article En | MEDLINE | ID: mdl-35847931

Recent advancement in the field of deep learning has provided promising performance for the analysis of medical images. Every year, pneumonia is the leading cause for death of various children under the age of 5 years. Chest X-rays are the first technique that is used for the detection of pneumonia. Various deep learning and computer vision techniques can be used to determine the virus which causes pneumonia using Chest X-ray images. These days, it is possible to use Convolutional Neural Networks (CNN) for the classification and analysis of images due to the availability of a large number of datasets. In this work, a CNN model is implemented for the recognition of Chest X-ray images for the detection of Pneumonia. The model is trained on a publicly available Chest X-ray images dataset having two classes: Normal chest X-ray images and Pneumonic Chest X-ray images, where each class has 5000 Samples. 80% of the collected data is used for the purpose to train the model, and the rest for testing the model. The model is trained and validated using two optimizers: Adam and RMSprop. The maximum recognition accuracy of 98% is obtained on the validation dataset. The obtained results are further compared with the results obtained by other researchers for the recognition of biomedical images.

9.
BMC Bioinformatics ; 23(1): 275, 2022 Jul 12.
Article En | MEDLINE | ID: mdl-35820793

BACKGROUND: Text mining in the biomedical field has received much attention and regarded as the important research area since a lot of biomedical data is in text format. Topic modeling is one of the popular methods among text mining techniques used to discover hidden semantic structures, so called topics. However, discovering topics from biomedical data is a challenging task due to the sparsity, redundancy, and unstructured format. METHODS: In this paper, we proposed a novel multiple kernel fuzzy topic modeling (MKFTM) technique using fusion probabilistic inverse document frequency and multiple kernel fuzzy c-means clustering algorithm for biomedical text mining. In detail, the proposed fusion probabilistic inverse document frequency method is used to estimate the weights of global terms while MKFTM generates frequencies of local and global terms with bag-of-words. In addition, the principal component analysis is applied to eliminate higher-order negative effects for term weights. RESULTS: Extensive experiments are conducted on six biomedical datasets. MKFTM achieved the highest classification accuracy 99.04%, 99.62%, 99.69%, 99.61% in the Muchmore Springer dataset and 94.10%, 89.45%, 92.91%, 90.35% in the Ohsumed dataset. The CH index value of MKFTM is higher, which shows that its clustering performance is better than state-of-the-art topic models. CONCLUSION: We have confirmed from results that proposed MKFTM approach is very efficient to handles to sparsity and redundancy problem in biomedical text documents. MKFTM discovers semantically relevant topics with high accuracy for biomedical documents. Its gives better results for classification and clustering in biomedical documents. MKFTM is a new approach to topic modeling, which has the flexibility to work with a variety of clustering methods.


Algorithms , Data Mining , Cluster Analysis , Data Mining/methods , Semantics
10.
Comput Intell Neurosci ; 2022: 7016554, 2022.
Article En | MEDLINE | ID: mdl-35510050

Nowadays, one of the most popular applications is cloud computing for storing data and information through World Wide Web. Since cloud computing has become available, users are rapidly increasing. Cloud computing enables users to obtain a better and more effective application at a lower cost in a more satisfactory way. Health services data must therefore be kept as safe and secure as possible because the release of this data could have serious consequences for patients. A framework for security and privacy must be employed to store and manage extremely sensitive data. Patients' confidential health records have been encrypted and saved in the cloud using cypher text so far. To ensure privacy and security in a cloud computing environment is a big issue. The medical system has been designed as a standard, access of records, and effective use by medical practitioners as required. In this paper, we propose a novel algorithm along with implementation details as an effective and secure E-health cloud model using identity-based cryptography. The comparison of the proposed and existing techniques has been carried out in terms of time taken for encryption and decryption, energy, and power. Decryption time has been decreased up to 50% with the proposed method of cryptography. As it will take less time for decryption, less power is consumed for doing the cryptography operations.


Computer Security , Telemedicine , Algorithms , Cloud Computing , Humans , Research Design
11.
Front Public Health ; 10: 860396, 2022.
Article En | MEDLINE | ID: mdl-35433587

Chronic diseases are increasing in prevalence and mortality worldwide. Early diagnosis has therefore become an important research area to enhance patient survival rates. Several research studies have reported classification approaches for specific disease prediction. In this paper, we propose a novel augmented artificial intelligence approach using an artificial neural network (ANN) with particle swarm optimization (PSO) to predict five prevalent chronic diseases including breast cancer, diabetes, heart attack, hepatitis, and kidney disease. Seven classification algorithms are compared to evaluate the proposed model's prediction performance. The ANN prediction model constructed with a PSO based feature extraction approach outperforms other state-of-the-art classification approaches when evaluated with accuracy. Our proposed approach gave the highest accuracy of 99.67%, with the PSO. However, the classification model's performance is found to depend on the attributes of data used for classification. Our results are compared with various chronic disease datasets and shown to outperform other benchmark approaches. In addition, our optimized ANN processing is shown to require less time compared to random forest (RF), deep learning and support vector machine (SVM) based methods. Our study could play a role for early diagnosis of chronic diseases in hospitals, including through development of online diagnosis systems.


Artificial Intelligence , Support Vector Machine , Algorithms , Chronic Disease , Humans , Neural Networks, Computer
12.
J Healthc Eng ; 2022: 9523009, 2022.
Article En | MEDLINE | ID: mdl-35320996

As multimedia technology is developing and growing these days, the use of an enormous number of images and its datasets is likewise expanding at a quick rate. Such datasets can be utilized for the purpose of image retrieval. This research focuses on extraction of similar images established on its different features for the image retrieval purpose from huge dataset of images. In this paper initially, the query image is searched within the available dataset and, then, the color difference histogram (CDH) descriptor is employed to retrieve the images from database. The basic characteristic of CDH is that it counts the color difference stuck among two distinct labels in the L ∗ a ∗ b ∗ color space. This method is experimented on random images used for various medical purposes. Various unlike features of an image are extracted via different distance methods. The precision rate, recall rate, and F-measure are all used to evaluate the system's performance. Comparative analysis in terms of F-measure is also made to check for the best distance method used for retrieval of images.


Algorithms , Delivery of Health Care , Databases, Factual , Humans
13.
Comput Intell Neurosci ; 2022: 7384131, 2022.
Article En | MEDLINE | ID: mdl-35069725

Blood cell count is highly useful in identifying the occurrence of a particular disease or ailment. To successfully measure the blood cell count, sophisticated equipment that makes use of invasive methods to acquire the blood cell slides or images is utilized. These blood cell images are subjected to various data analyzing techniques that count and classify the different types of blood cells. Nowadays, deep learning-based methods are in practice to analyze the data. These methods are less time-consuming and require less sophisticated equipment. This paper implements a deep learning (D.L) model that uses the DenseNet121 model to classify the different types of white blood cells (WBC). The DenseNet121 model is optimized with the preprocessing techniques of normalization and data augmentation. This model yielded an accuracy of 98.84%, a precision of 99.33%, a sensitivity of 98.85%, and a specificity of 99.61%. The proposed model is simulated with four batch sizes (BS) along with the Adam optimizer and 10 epochs. It is concluded from the results that the DenseNet121 model has outperformed with batch size 8 as compared to other batch sizes. The dataset has been taken from the Kaggle having 12,444 images with the images of 3120 eosinophils, 3103 lymphocytes, 3098 monocytes, and 3123 neutrophils. With such results, these models could be utilized for developing clinically useful solutions that are able to detect WBC in blood cell images.


Deep Learning , Leukocytes , Lymphocytes
14.
J Healthc Eng ; 2021: 6712424, 2021.
Article En | MEDLINE | ID: mdl-34880977

The Internet of Medical Things (IoMT) has emerged as one of the most important key applications of IoT. IoMT makes the diagnosis and care more convenient and reliable with proven results. The paper presents the technology, open issues, and challenges of IoMT-based systems. It explores the various types of sensors and smart equipment based on IoMT and used for diagnosis and patient care. A comprehensive survey of early detection and postdetection care of the neural disorder dementia is conducted. The paper also presents a postdiagnosis dementia care model named "Demencare." This model incorporates eight sensors capable of tracking the daily routine of dementia patient. The patients can be monitored locally by an edge computing device kept at their premises. The medical experts may also monitor the patients' status for any deviation from normal behavior. IoMT enables better postdiagnosis care for neural disorders, like dementia and Alzheimer's. The patient's behavior and vital parameters are always available despite the remote location of the patients. The data of the patients may be classified, and new insights may be obtained to tackle patients in a better manner.


Dementia , Internet of Things , Dementia/diagnosis , Dementia/therapy , Early Diagnosis , Humans , Monitoring, Physiologic
15.
J Healthc Eng ; 2021: 8106467, 2021.
Article En | MEDLINE | ID: mdl-34777738

The novel paradigm of Internet of Things (IoT) is gaining recognition in the numerous scenarios promoting the pervasive presence of smart things around us through its application in various areas of society, which includes transportation, healthcare, industries, and agriculture. One more such application is in the smart office to monitor the health of devices via machine learning (ML) that makes the equipment more efficient by allowing real-time monitoring of their health. It guarantees indoor comfort as per the user's satisfaction as it emphasizes on fault prediction in real-life devices. Early identification of various types of faults in IoT devices is the key requirement in smart offices. IoT devices are becoming ubiquitous and provide an assistant to supervise an office that is regulated by ML and data received from sensors is stored in cloud. A recommender system facilitates the selection of an appropriate solution for faults in IoT-enabled devices to mitigate faults. The architecture proposed in this paper is used to monitor each and every office appliance connected via IoT technology using ML technique, and recommender system is used to recommend solutions for fault patterns without much human intervention. The ultrasonic motion sensor is used to fetch the information of employee availability in cubicles and data is sent to the cloud through the WiFi module. ATmega8 is used to control electrical appliances in the office environment. The significance of this work is to forecast the faults in IoT appliances which will have an impact on life and reliability of IoT appliances. The main objective is to design a prototype of a smart office using IoT that can control and automate workplace devices and forecast whether the device needs repairing or replacing, thus reducing the overall burden on the employee and helping out in increasing physical as well as mental health of the person.


Cloud Computing , Delivery of Health Care , Humans , Monitoring, Physiologic , Office Automation , Reproducibility of Results
16.
Comput Math Methods Med ; 2021: 3900254, 2021.
Article En | MEDLINE | ID: mdl-34594396

There have been remarkable changes in our lives and the way we perceive the world with advances in computing technology. Healthcare sector is evolving with the intervention of the latest computer-driven technology and has made a remarkable change in the diagnosis and treatment of various diseases. Due to many governing factors including air pollution, there is a rapid rise in chest-related diseases and the number of such patients is rising at an alarming rate. In this research work, we have employed machine learning approach for the detecting various chest-related problems using convolutional neural networks (CNN) on an open dataset of chest X-rays. The method has an edge over the traditional approaches for image segmentation including thresholding, k-means clustering, and edge detection. The CNN cannot scan and process the whole image at an instant; it needs to recursively scan small pixel spots until it has scanned the whole image. Spatial transformation layers and VGG19 have been used for the purpose of feature extraction, and ReLU activation function has been employed due to its inherent low complexity and high computation efficiency; finally, stochastic gradient descent has been used as an optimizer. The main advantage of the current method is that it retains the essential features of the image for prediction along with incorporating a considerable dimensional reduction. The model delivered substantial improvement over existing research in terms of precision, f-score, and accuracy of prediction. This model if used precisely can be very effective for healthcare practitioners in determining the thoracic or pneumonic symptoms in the patient at an early stage thus guiding the practitioner to start the treatment immediately leading to fast improvement in the health status of the patient.


Machine Learning , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods , Thoracic Diseases/classification , Thoracic Diseases/diagnostic imaging , Computational Biology , Databases, Factual , Humans , Radiographic Image Interpretation, Computer-Assisted/statistics & numerical data , Radiography, Thoracic/statistics & numerical data , Stochastic Processes , Syndrome
17.
Comput Intell Neurosci ; 2021: 2214971, 2021.
Article En | MEDLINE | ID: mdl-34616442

The aim of the presented work is to analyze the ergonomics-related disorders in online education using the fuzzy AHP approach. A group dialogue with online education academicians, online education students, biotechnologists, and sedentary computer users has been performed to spot ergonomics-related disorders in online education. Totally eight ergonomics-related disorders in online education have been identified, and the weight of each disorder has been computed with triangle-shaped fuzzy numbers in pairwise comparison. Furthermore, the ergonomics-related disorders in online education are kept in four major categories such as afflictive disorders, specific disorders, psychosocial disorders, and chronic disorders. These four categories of ergonomics-related disorders in online education are evaluated and compared using fuzzy analytical hierarchical process methodology to get ranked in terms of priorities. The results may be instrumental for taking appropriate corrective actions to prevent ergonomics-related disorders.


Education, Distance , Ergonomics , Humans
...