Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
ACS Appl Mater Interfaces ; 14(24): 28085-28096, 2022 Jun 22.
Article En | MEDLINE | ID: mdl-35680562

To achieve both the synergistic advantages of outstanding flexibility in organic dielectrics and remarkable dielectric/insulating properties in inorganic dielectrics, a plasma-polymerized hafnium oxide (HfOx) hybrid (PPH-hybrid) dielectric is proposed. Using a radio-frequency magnetron cosputtering process, the high-k HfOx dielectric is plasma-polymerized with polytetrafluoroethylene (PTFE), which is a flexible, thermally stable, and hydrophobic fluoropolymer dielectric. The PPH-hybrid dielectric with a high dielectric constant of 14.17 exhibits excellent flexibility, maintaining a leakage current density of ∼10-8 A/cm2 even after repetitive bending stress (up to 10000 bending cycles with a radius of 2 mm), whereas the HfOx dielectric degrades to be leaky. To evaluate its practical applicability to flexible thin-film transistors (TFTs), the PPH-hybrid dielectric is applied to amorphous indium-gallium-zinc oxide (IGZO) TFTs as a gate dielectric. Consequently, the PPH-hybrid dielectric-based IGZO TFTs exhibit stable electrical performance under the same harsh bending cycles: a field-effect mobility of 16.99 cm2/(V s), an on/off current ratio of 1.15 × 108, a subthreshold swing of 0.35 V/dec, and a threshold voltage of 0.96 V (averaged in nine devices). Moreover, the PPH-hybrid dielectric-based IGZO TFTs exhibit a reduced I-V hysteresis and an enhanced positive bias stress stability, with the threshold voltage shift decreasing from 4.99 to 1.74 V, due to fluorine incorporation. These results demonstrate that PTFE improves both the mechanical durability and electrical stability, indicating that the PPH-hybrid dielectric is a promising candidate for high-performance and low-power flexible electronics.

2.
ACS Appl Mater Interfaces ; 13(30): 35981-35989, 2021 Aug 04.
Article En | MEDLINE | ID: mdl-34296603

A homojunction-structured oxide phototransistor based on a mechano-chemically treated indium-gallium-zinc oxide (IGZO) absorption layer is reported. Through this novel and facile mechano-chemical treatment, mechanical removal of the cellophane adhesive tape induces reactive radicals and organic compounds on the sputtered IGZO film surface. Surface modification, following the mechano-chemical treatment, caused porous sites in the solution-processed IGZO film, which can give rise to a homojunction-porous IGZO (HPI) layer and generate sub-gap states from oxygen-related defects. These intentionally generated sub-gap states played a key role in photoelectron generation under illumination with relatively long-wavelength visible light despite the wide band gap of IGZO (>3.0 eV). Compared with conventional IGZO phototransistors, our HPI phototransistor displayed outstanding optoelectronic characteristics and sensitivity; we measured a threshold voltage (Vth) shift from 3.64 to -6.27 V and an on/off current ratio shift from 4.21 × 1010 to 4.92 × 102 under illumination with a 532 nm green light of 10 mW/mm2 intensity and calculated a photosensitivity of 1.16 × 108. The remarkable optoelectronic characteristics and high optical transparency suggest optical sensor applications.

3.
Sci Rep ; 10(1): 18853, 2020 Nov 02.
Article En | MEDLINE | ID: mdl-33139796

We report a novel self-patterning method for solution-processed indium zinc oxide (IZO) thin films based on photosensitive precursors. This approach is an alternative and evolutionary approach to the traditional photoresist patterning techniques. Chelate bonds between metal ions and ß-diketone compounds in ultraviolet light-exposed IZO solutions provided intrinsic photosensitivity, which resulted in a solubility difference between exposed and non-exposed regions. This difference enabled self-patterning of the IZO for thin-film transistor (TFT) fabrication. Compared with previously reported self-patterning methods based on photosensitive activators, our self-patterned IZO TFTs based on photosensitive precursors displayed excellent electrical characteristics and stability. The field-effect mobility increased from 0.27 to 0.99 cm2/Vs, the subthreshold swing decreased from 0.54 to 0.46 V/dec, and the threshold voltage shift under a positive bias stress test (1,000 s) improved from 9.32 to 1.68 V. The photosensitive precursor played a key role in these improvements permitting fewer organic species which act as defect sites after metal oxide formation. Consequently, our approach compares favorably with that of conventional fabrication process using photoresist in terms of its simplicity, cost efficiency, and electrical performance.

4.
Aging Cell ; 19(6): e13151, 2020 06.
Article En | MEDLINE | ID: mdl-32449834

Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+ -dependent protein deacetylase, which regulates the expression of the ATP-dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho-mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)-like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2-Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.


Mechanistic Target of Rapamycin Complex 1/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Sirtuins/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoplasm/metabolism , Phosphorylation , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Proton-Translocating ATPases/biosynthesis , Proton-Translocating ATPases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction
5.
ACS Appl Mater Interfaces ; 6(5): 3371-7, 2014 Mar 12.
Article En | MEDLINE | ID: mdl-24503476

We have investigated the effect of hydrogen peroxide (H2O2) on negative bias stress (NBS) stability of solution-processed amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The instability of solution-processed a-IGZO TFTs under NBS is attributed to intrinsic oxygen vacancy defects (Vo) and organic chemical-induced defects, such as pores, pin holes, and organic residues. In this respect, we added H2O2 into an indium-gallium-zinc oxide solution to reduce the defects without any degradation of electrical performance. The field-effect mobility and sub-threshold slope of the a-IGZO TFTs were improved from 0.37 cm(2) V(-1) s(-1) and 0.86 V/dec to 0.97 cm(2) V(-1) s(-1) and 0.58 V/dec, respectively. Furthermore, the threshold voltage shift under NBS was dramatically decreased from -3.73 to -0.18 V. These results suggest that H2O2 effectively reduces Vo through strong oxidation and minimizes organic chemical-induced defects by eliminating the organic chemicals at lower temperatures compared to a conventional solution process.

6.
Biosens Bioelectron ; 55: 99-105, 2014 May 15.
Article En | MEDLINE | ID: mdl-24368226

Low-temperature solution-processed In-Zn-O (IZO) thin-film transistors (TFTs) exhibiting a favorable microenvironment for electron transfer by adsorbed artificial deoxyribonucleic acid (DNA) have extraordinary potential for emerging flexible biosensor applications. Superb sensing ability to differentiate even 0.5 µL of 50 nM DNA target solution was achieved through using IZO TFTs fabricated at 280 °C. Our IZO TFT had a turn-on voltage (V(on)) of -0.8 V, on/off ratio of 6.94 × 10(5), and on-current (I(on)) value of 2.32 × 10(-6)A in pristine condition. A dry-wet method was applied to immobilize two dimensional double crossover tile based DNA nanostructures on the IZO surface, after which we observed a negative shift of the transfer curve accompanied by a significant increase in the Ion and degradation of the Von and on/off ratio. As the concentration of DNA target solution increased, variances in these parameters became increasingly apparent. The sensing mechanism based on the current evolution was attributed to the oxidation of DNA, in which the guanine nucleobase plays a key role. The sensing behavior obtained from flexible biosensors on a polymeric substrate fabricated under the identical conditions was exactly analogous. These results compare favorably with the conventional field-effect transistor based DNA sensors by demonstrating remarkable sensitivity and feasibility of flexible devices that arose from a different sensing mechanism and a low-temperature process, respectively.


Biosensing Techniques/instrumentation , Conductometry/instrumentation , DNA/genetics , Membranes, Artificial , Oligonucleotide Array Sequence Analysis/instrumentation , Sequence Analysis, DNA/instrumentation , Transistors, Electronic , DNA/analysis , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Indium/chemistry , Reproducibility of Results , Sensitivity and Specificity , Staining and Labeling , Temperature , Zinc Oxide/chemistry
7.
ACS Appl Mater Interfaces ; 5(21): 10715-20, 2013 Nov 13.
Article En | MEDLINE | ID: mdl-24074004

A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.


Biosensing Techniques , DNA/isolation & purification , Nanostructures/chemistry , Copper/chemistry , DNA/chemistry , Gallium/chemistry , Zinc Oxide/chemistry
8.
ACS Appl Mater Interfaces ; 5(1): 98-102, 2013 Jan.
Article En | MEDLINE | ID: mdl-23211212

We propose solution-processed In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) with multistacked active layers for detecting artificial deoxyribonucleic acid (DNA). Enhanced sensing ability and stable electrical performance of TFTs were achieved through use of multistacked active layers. Our IGZO TFT had a turn-on voltage (V(on)) of -0.8 V and a subthreshold swing (SS) value of 0.48 V/decade. A dry-wet method was adopted to immobilize double-crossover DNA on the IGZO surface, after which an anomalous hump effect accompanying a significant decrease in V(on) (-13.6 V) and degradation of SS (1.29 V/decade) was observed. This sensing behavior was attributed to the middle interfaces of the multistacked active layers and the negatively charged phosphate groups on the DNA backbone, which generated a parasitic path in the TFT device. These results compared favorably with those reported for conventional field-effect transistor-based DNA sensors with remarkable sensitivity and stability.


DNA/chemistry , Nanostructures/chemistry , Transistors, Electronic , Gallium/chemistry , Indium/chemistry , Oxides/chemistry , Solutions/chemistry , Zinc/chemistry
9.
J Nanosci Nanotechnol ; 12(2): 1165-9, 2012 Feb.
Article En | MEDLINE | ID: mdl-22629913

In this study, solution-processed nickel oxide (NiO) thin film was investigated as a hole transport layer on anode to improve the performance of bulk heterojunction solar cell based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). We fabricated NiO thin film without any vacuum-related process. Characterization of the NiO film under this study shows that it has maximum transmittance of 93.22% and bandgap of 3.84 eV which are proper for solar cell. Insertion of the NiO layer affords to realize enhanced power conversion efficiency of 1.97% and fill factor of 52.11% showing improvement over existing cells. In addition, NiO suggests one solution of minimizing conventional problems of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) such as interfacial power losses, corrosion of indium tin oxide layer, and degradation of the devices. The value of such hole transporting and electron blocking properties is clearly demonstrated and could be applicable to other organic photovoltaics.

...