Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38539569

RESUMEN

During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host's immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells' functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells' anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial-mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response.

2.
Cancers (Basel) ; 15(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686541

RESUMEN

Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.

3.
Crit Rev Immunol ; 42(4): 37-49, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37022358

RESUMEN

The recognition of self-antigens by the T-cell immune system can results in autoimmunity. Current treatments of autoimmunity include non-steroid anti-inflammatory drugs and treatments aimed to control the immune system directly. Additionally, inhibiting signaling pathways that encourage T cell activation are promising strategies to help increase self-tolerance and control the inflammatory immune response. Despite the many treatments available, there are still great risks that accompanies each therapy; therefore, the shift towards immune checkpoint therapy is promising as it specifically targets the activated autoimmune T cells. In contrast to cancer, immune check point inhibitors (ICIs) for autoimmune treatment are attractive targets for the amplification of inhibitory functions of autoimmune T cells. A particular protein of interest for autoimmune therapy is the immune checkpoint protein V-type immunoglobin domain-containing suppressor of T cell activation (VISTA) or programmed dealth-1 homolog (PD-1H) of the B7 family. VISTA acts as both a ligand [on antigen presenting cells (APCs) and other cells] and as a receptor (on T cells). It functions as an immuno-suppressor by decreasing T cell proliferation, balancing the T cell/T regulatory cells (Tregs) ratio, and inhibiting cytokine production and inflammation. For the treatment of autoimmunity, an agonist anti-VISTA mAb is needed to interact and activate the inhibitory intracellular signaling pathways that result in the inactivation of the autoimmune T cells. New developments such as VISTA.cartilage oligomeric matrix protein (VISTA.COMP) and anti-human VISTA (anti-hVISTA) mAbs 7E12 and 7GF are potential drug candidates to help downregulate autoimmune responses and reduce the inflammatory states of patients with autoimmunity.


Asunto(s)
Anticuerpos Monoclonales , Autoinmunidad , Humanos , Anticuerpos Monoclonales/uso terapéutico , Linfocitos T , Activación de Linfocitos , Dominios de Inmunoglobulinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...