Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38536087

RESUMEN

A Gram-stain-positive, non-spore-forming, and obligate anaerobic bacteria designated strain CBA3647T was isolated from a horse faecal sample in Jeju, Republic of Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CBA3647T formed a distinct phyletic lineage from closely related species within the genus Peptostreptococcus. Based on comparative analysis of 16S rRNA gene sequences, Peptostreptococcus anaerobius ATCC 27337T is most closely related to strain CBA3647T with a 16S rRNA gene similarity of 98.31 %, while similarity to other type strains is below 98.0 %. The genomic DNA G+C content of strain CBA3647T was 30.0 mol%. The digital DNA-DNA hybridization values between strain CBA3647T and the six Peptostreptococcus species were equal to or less than 24 %. Cells were non-motile and oval-shaped cocci with catalase-positive and oxidase-negative activities. Growth occurred at 20-40 °C (optimum, 35 °C), pH 6-8 (optimum, pH 7), and in the presence of 0-2 % (w/v) NaCl (optimum, 1 %). Strain CBA3647T contained C14 : 0 iso and C16 : 0 as major fatty acids. Phenotypic, chemotaxonomic, and molecular properties of strain CBA3647T suggest that it represents a novel species in the genus Peptostreptococcus, which has been named Peptostreptococcus equinus sp. nov. The type strain is CBA3647T (=KACC 22891T= JCM 35846T).


Asunto(s)
Ácidos Grasos , Peptostreptococcus , Animales , Caballos , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Heces
2.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37910171

RESUMEN

Strain CBA3108T is a Gram-positive, non-spore-forming, obligately anaerobic bacterium isolated from horse faecal samples obtained in Jeju Island, Republic of Korea. The cells of CBA3108T are non-motile short rods that have been assessed as catalase-positive and oxidase-negative. Growth of the strain occurs under the following conditions: 25-45 °C (optimum, 35 °C); pH 6-9 (optimum, pH 6); and in the presence of 0-6 % (w/v) NaCl (optimum, 2%). Major fatty acids in the strain include C15 : 0 iso and C15 : 0 iso DMA, while major polar lipids include phosphatidylglycerol, diphosphatidylglycerol and phosphatidylcholine. Based on phylogenetic analysis using 16S rRNA gene sequences, strain CBA3108T forms a phyletic lineage distinct from other closely related species within the genus Cutibacterium. It was found to be most closely related to Cutibacterium avidum ATCC 25577T (98.27 % 16S rRNA gene sequence similarity) and other strains within the genus (≤98.0 %). The genomic DNA G+C content of strain CBA3108T was 63.2 mol%. The in silico DNA-DNA hybridization values of strain CBA3108T with C. avidum ATCC 25577T, C. porci WCA-380-WT-3AT and C. acnes subsp. acnes DSM 1897T were 33.6, 21.7 and 22.7 %, respectively. Its phenotypic, chemotaxonomic and molecular properties support the hypothesis that strain CBA3108T represents a novel species in the genus Cutibacterium, for which we propose the name Cutibacterium equinum sp. nov. The type strain is CBA3108T (=KACC 22889T=JCM 35966T).


Asunto(s)
Ácidos Grasos , Animales , Caballos , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Heces
3.
Artículo en Inglés | MEDLINE | ID: mdl-37750780

RESUMEN

A novel, anaerobic, Gram-stain-positive coccoid strain, CBA3646T, was isolated from the faeces of a thoroughbred racehorse. Phylogenetic analysis based on 16S rRNA gene sequencing yielded results indicative of CBA3646T representing a member of the genus Peptoniphilus, with the species most closely related to it being Peptoniphilus asaccharolyticus DSM 20463T, with a similarity of 94.79 %. DNA-DNA relatedness and average nucleotide identity values between CBA3646T and P. asaccharolyticus DSM 20463T were 21.4 and 67.6 %, respectively. CBA3646T has a circular chromosomal genome of 1 709 189 bp (45.5 mol% DNA G+C content), containing 1652 genes in total, 1584 predicted protein-coding genes, 3 complete rRNA loci and 47 tRNA genes. The cells were non-motile diplococci, catalase-positive and oxidase-negative. Growth of CBA3646T was observed at 20-40 °C (optimal temperature, 35 °C) and in the presence of 0-4 % (w/v) NaCl (optimum concentration, 1 %). The major fatty acids (>10 %) of CBA3646T were C16 : 0, C18 : 1ω9c and C18 : 1ω9c dimethyl acetal, with its major polar lipids being diphosphatidylglycerol and phosphatidylglycerol. The elucidated phylogenetic, physiological, chemotaxonomic and molecular properties are indicative of strain CBA3646T representing a novel species of the genus Peptoniphilus, or which the name Peptoniphilus equinus sp. nov. is proposed. The type strain is CBA3646T (= KACC 22890T = JCM 35845T).


Asunto(s)
Colorantes , Cocos Grampositivos , Caballos , Animales , Anaerobiosis , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Heces , Clostridiales
4.
Food Res Int ; 157: 111261, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35761573

RESUMEN

Lactic acid bacteria (LAB) in kimchi, a traditional Korean food, are major fermentative microorganisms affecting the quality, safety, and nutritional and organoleptic properties of the final product. In this study, we determined the role of three key LAB strains, Leuconostoc gelidum, Latilactobacillus sakei, Weissella koreensis originated from different raw ingredients during natural fermentation, as opposed to an axenic environment. Starter cultures were inoculated into food with wild indigenous microbial communities, and the dynamics of bacterial communities and metabolites were analyzed during fermentation. As bacteriophages within the food viral community directly affect fermentation by influencing bacterial function and composition, the diversity and composition of DNA viral communities were compared with those of corresponding bacterial communities using a metagenomic approach. Our results provide insights into the ecological role of LAB starters in food fermentation and the potential impact of bacteriophages as modulators of bacterial communities associated with the fermentation properties of kimchi.


Asunto(s)
Bacteriófagos , Alimentos Fermentados , Lactobacillales , Bacterias/genética , Fermentación , Microbiología de Alimentos , Lactobacillus/metabolismo , Verduras
5.
Anim Microbiome ; 4(1): 30, 2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35527289

RESUMEN

BACKGROUND: Invertebrates are a very attractive subject for studying host-microbe interactions because of their simple gut microbial community and host diversity. Studying the composition of invertebrate gut microbiota and the determining factors is essential for understanding their symbiotic mechanism. Cephalopods are invertebrates that have similar biological properties to vertebrates such as closed circulation system, an advanced nervous system, and a well-differentiated digestive system. However, it is not currently known whether their microbiomes have more in common with vertebrates or invertebrates. This study reports on the microbial composition of six cephalopod species and compares them with other mollusk and marine fish microbiomes to investigate the factors that shape the gut microbiota. RESULTS: Each cephalopod gut consisted of a distinct consortium of microbes, with Photobacterium and Mycoplasma identified as core taxa. The gut microbial composition of cephalopod reflected their host phylogeny, the importance of which was supported by a detailed oligotype-level analysis of operational taxonomic units assigned to Photobacterium and Mycoplasma. Photobacterium typically inhabited multiple hosts, whereas Mycoplasma tended to show host-specific colonization. Furthermore, we showed that class Cephalopoda has a distinct gut microbial community from those of other mollusk groups or marine fish. We also showed that the gut microbiota of phylum Mollusca was determined by host phylogeny, habitat, and diet. CONCLUSION: We have provided the first comparative analysis of cephalopod and mollusk gut microbial communities. The gut microbial community of cephalopods is composed of distinctive microbes and is strongly associated with their phylogeny. The Photobacterium and Mycoplasma genera are core taxa within the cephalopod gut microbiota. Collectively, our findings provide evidence that cephalopod and mollusk gut microbiomes reflect host phylogeny, habitat, and diet. It is hoped that these data can contribute to future studies on invertebrate-microbe interactions.

6.
Microbiome ; 9(1): 166, 2021 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-34332628

RESUMEN

BACKGROUND: Our understanding of the gut microbiota of animals is largely based on studies of mammals. To better understand the evolutionary basis of symbiotic relationships between animal hosts and indigenous microbes, it is necessary to investigate the gut microbiota of non-mammalian vertebrate species. In particular, fish have the highest species diversity among groups of vertebrates, with approximately 33,000 species. In this study, we comprehensively characterized gut bacterial communities in fish. RESULTS: We analyzed 227 individual fish representing 14 orders, 42 families, 79 genera, and 85 species. The fish gut microbiota was dominated by Proteobacteria (51.7%) and Firmicutes (13.5%), different from the dominant taxa reported in terrestrial vertebrates (Firmicutes and Bacteroidetes). The gut microbial community in fish was more strongly shaped by host habitat than by host taxonomy or trophic level. Using a machine learning approach trained on the microbial community composition or predicted functional profiles, we found that the host habitat exhibited the highest classification accuracy. Principal coordinate analysis revealed that the gut bacterial community of fish differs significantly from those of other vertebrate classes (reptiles, birds, and mammals). CONCLUSIONS: Collectively, these data provide a reference for future studies of the gut microbiome of aquatic animals as well as insights into the relationship between fish and their gut bacteria, including the key role of host habitat and the distinct compositions in comparison with those of mammals, reptiles, and birds. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Firmicutes/genética , Peces , Humanos , ARN Ribosómico 16S/genética
7.
J Microbiol ; 59(8): 792-806, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34302622

RESUMEN

Viridans group streptococci are a serious health concern because most of these bacteria cause life-threatening infections, especially in immunocompromised and hospitalized individuals. We focused on two alpha-hemolytic Streptococcus strains (I-G2 and I-P16) newly isolated from an ileostomy effluent of a colorectal cancer patient. We examined their pathogenic potential by investigating their prevalence in human and assessing their pathogenicity in a mouse model. We also predicted their virulence factors and pathogenic features by using comparative genomic analysis and in vitro tests. Using polyphasic and systematic approaches, we identified the isolates as belonging to a novel Streptococcus species and designated it as Streptococcus ilei. Metagenomic survey based on taxonomic assignment of datasets from the Human Microbiome Project revealed that S. ilei is present in most human population and at various body sites but is especially abundant in the oral cavity. Intraperitoneal injection of S. ilei was lethal to otherwise healthy C57BL/6J mice. Pathogenomics and in vitro assays revealed that S. ilei possesses a unique set of virulence factors. In agreement with the in vivo and in vitro data, which indicated that S. ilei strain I-G2 is more pathogenic than strain I-P16, only the former displayed the streptococcal group A antigen. We here newly identified S. ilei sp. nov., and described its prevalence in human, virulence factors, and pathogenicity. This will help to prevent S. ilei strain misidentification in the future, and improve the understanding and management of streptococcal infections.


Asunto(s)
Microbiota , Infecciones Estreptocócicas/microbiología , Streptococcus/aislamiento & purificación , Streptococcus/patogenicidad , Adulto , Animales , Microbioma Gastrointestinal , Humanos , Ileostomía , Masculino , Ratones , Ratones Endogámicos C57BL , Filogenia , Streptococcus/clasificación , Streptococcus/genética , Virulencia
8.
Commun Biol ; 4(1): 548, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972668

RESUMEN

Mitochondrial function and innate immunity are intimately linked; however, the mechanisms how mitochondrion-shaping proteins regulate innate host defense remains largely unknown. Herein we show that mitofusin-2 (MFN2), a mitochondrial fusion protein, promotes innate host defense through the maintenance of aerobic glycolysis and xenophagy via hypoxia-inducible factor (HIF)-1α during intracellular bacterial infection. Myeloid-specific MFN2 deficiency in mice impaired the antimicrobial and inflammatory responses against mycobacterial and listerial infection. Mechanistically, MFN2 was required for the enhancement of inflammatory signaling through optimal induction of aerobic glycolysis via HIF-1α, which is activated by mitochondrial respiratory chain complex I and reactive oxygen species, in macrophages. MFN2 did not impact mitophagy during infection; however, it promoted xenophagy activation through HIF-1α. In addition, MFN2 interacted with the late endosomal protein Rab7, to facilitate xenophagy during mycobacterial infection. Our findings reveal the mechanistic regulations by which MFN2 tailors the innate host defense through coordinated control of immunometabolism and xenophagy via HIF-1α during bacterial infection.


Asunto(s)
Infecciones Bacterianas/inmunología , GTP Fosfohidrolasas/fisiología , Glucólisis , Inmunidad Innata/inmunología , Macroautofagia , Macrófagos/inmunología , Mitocondrias/inmunología , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/microbiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
EMBO Rep ; 22(1): e50663, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33225575

RESUMEN

Castration of young males is widely used in the cattle industry to improve meat quality, but the mechanism linking hypogonadism and host metabolism is not clear. Here, we use metataxonomic and metabolomic approaches to evaluate the intestinal microbiota and host metabolism in male, castrated male (CtM), and female cattle. After pubescence, the CtM cattle harbor distinct ileal microbiota dominated by the family Peptostreptococcaceae and exhibit distinct serum and muscle amino acid profiles (i.e., highly abundant branched-chain amino acids), with increased extra- and intramuscular fat storage. We also evaluate the causative factor(s) that underpin the alteration of the intestinal microbiota and host metabolic phenotype in response to hypogonadism. Castration of male mice phenocopies both the intestinal microbial alterations and obese-prone metabolism observed in cattle. Antibiotic treatment and fecal microbiota transplantation experiments in a mouse model confirm that the intestinal microbial alterations associated with hypogonadism are a key contributor to the obese phenotype in the CtM animals. Collectively, targeting the gut microbiota is a potential therapeutic strategy for the treatment of both hypogonadism and obesity.


Asunto(s)
Adiposidad , Microbioma Gastrointestinal , Animales , Bovinos , Trasplante de Microbiota Fecal , Femenino , Masculino , Ratones , Obesidad , Orquiectomía
10.
Int J Syst Evol Microbiol ; 70(10): 5439-5444, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32886601

RESUMEN

A novel Gram-stain-positive, non-motile, non-spore-forming, coccobacillus-shaped, strictly aerobic bacterium, designated strain H23T48T, was isolated from the faecal sample of an oriental stork collected from the Seoul Grand Park Zoo in Seoul, Republic of Korea. Optimal growth of strain H23T48T was observed at 30-37 °C, pH 8 and with 3 % (w/v) NaCl. 16S rRNA gene sequence-based phylogenetic analysis revealed that strain H23T48T was closely related to the genus Flaviflexus, with 97.0 and 96.7 % sequence similarities to Flaviflexus salsibiostraticola EBR4-1-2T and Flaviflexus huanghaiensis H5T, respectively. Strain H23T48T possessed MK-9(H4) as the major menaquinone and C16 : 0 (42.4 %), C18 : 1 ω9c (31.3 %) and C14 : 0 (17.7 %) as the major cellular fatty acids. The polar lipids included phosphatidylglycerol, two unidentified lipids, six unidentified phospholipids and two unidentified glycophospholipids. The amino acid composition of the cell-wall peptidoglycan was l-alanine, l-lysine, d-glutamic acid, l-aspartic acid and glycine. The genomic G+C content of strain H23T48T is 59.5 mol% and the average nucleotide identity value between H23T48T and F. salsibiostraticola KCT C33148T (=EBR4-1-2T) is 75.5 %. Based on the obtained data, strain H23T48T represents a novel species of the genus Flaviflexus, for which the name Flaviflexus ciconiae sp. nov. is proposed. The type strain is H23T48T (=KCTC 49253T=JCM 33282T).


Asunto(s)
Actinomycetaceae/clasificación , Aves/microbiología , Filogenia , Actinomycetaceae/aislamiento & purificación , Animales , Animales de Zoológico/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Heces/microbiología , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Int J Syst Evol Microbiol ; 70(5): 3247-3254, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32375988

RESUMEN

A novel, Gram-stain-positive, non-spore-forming, facultatively anaerobic bacterium, designated strain H21T32T, was isolated from the faeces of an Oriental stork, Ciconia boyciana. Cells formed cocci grouped in pairs, tetrads or conglomerates, and colonies on solid medium were pale yellow. Strain H21T32T belonged to the genus Jeotgalibaca, family Carnobacteriaceae, order Lactobacillales and class Bacilli. The 16S rRNA gene sequences of the strain showed 97.06-97.34, 96.17-96.31 and 95.93-96.07 % similarity to the type strains of Jeotgalibaca arthritidis, J. porci and J. dankookensis, respectively. The strain grew at 10-37 °C (optimum temperature: 30 °C), with 0-7 % (w/v) NaCl (optimum salinity: 0.5 %) and at pH 7-9 (optimum pH: 8). The main cellular fatty acids were C16 : 1 ω9c, C18 : 1 ω9c and C16 : 0. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. Respiratory quinones were not detected. Sugar components of the peptidoglycan were rhamnose, ribose and glucose. Amino acid components of the cell wall were l-alanine, d-glucose, l-lysine, glycine and aspartic acid. The DNA G+C content of the strain was 37.1 mol%. Average nucleotide identity between strain H21T32T and J. arthritidis CECT 9157T was 77.02 %, confirming that strain H21T32T represents a novel species of the genus Jeotgalibaca, for which the name Jeotgalibaca ciconiae sp. nov. is proposed. The type strain is H21T32T (=KCTC 33991T=JCM 33222T).


Asunto(s)
Aves/microbiología , Carnobacteriaceae/clasificación , Heces/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Carnobacteriaceae/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Peptidoglicano/química , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN
12.
Int J Syst Evol Microbiol ; 70(4): 2305-2311, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32038006

RESUMEN

A novel Gram-negative, obligately aerobic, rod-shaped and non-motile bacterium, designated strain K13M18T, was isolated from the intestinal tract of a Korean indigenous fish, oily bitterling (Acheilognathus koreensis). Strain K13M18T formed creamy-pink colonies on a marine agar plate. Results of phylogenetic analysis based on the 16S rRNA gene sequence similarity indicated that strain K13M18T was most closely related to Tabrizicola sediminis DRYC-M-16T, sharing 97.62 % similarity with that strain. Strain K13M18T belonged to the genus Tabrizicola, which formed a cluster with Tabrizicola aquatica RCRI19T, Tabrizicola fusiformis SY72T, Tabrizicola sediminis DRYC-M-16T and Tabrizicola alkalilacus DJCT in a phylogenetic tree based on the 16S rRNA gene sequences. Strain K13M18T grown optimally in 0 % (w/v) NaCl, at pH 7 and 30 °C, in a marine broth medium. The predominant cellular fatty acids were C18 : 1 ω7c and C18 : 1 ω6c. The major respiratory isoprenoid quinone was ubiquinone Q-10. Polar lipids of strain K13M18T contained phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol, six unidentified aminophospholipids, one unidentified aminolipid and an unidentified lipid. Based on genome sequencing, the DNA G+C content of strain K13M18T was 64.08 mol %, with an average nucleotide identity value, calculated by a comparative genomic analysis of strains K13M18T and T. sediminis DRYC-M-16T, of 74.82 %. Based on the phylogenetic, genotypic, and phenotypic information, strain K13M18T is proposed to be a novel species of the genus Tabrizicola. The type strain is K13M18T (=KCTC 62659T=JCM 33230T).


Asunto(s)
Peces/microbiología , Tracto Gastrointestinal/microbiología , Filogenia , Rhodobacteraceae/clasificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Agua Dulce , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , República de Corea , Rhodobacteraceae/aislamiento & purificación , Análisis de Secuencia de ADN , Ubiquinona/análogos & derivados , Ubiquinona/química
13.
Int J Syst Evol Microbiol ; 70(1): 499-504, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31613737

RESUMEN

A novel Gram-stain-negative, aerobic, rod-shaped, reddish-orange-coloured, gliding bacterial strain, designated L12M1T, was isolated from the gut of the Korean scallop, Patinopecten yessoensis. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain L12M1T formed a monophyletic clade with the strains in the genus Flammeovirga and showed highest 16S rRNA gene sequence similarity to Flammeovirga kamogawensis YS10T (98.66 %). The major cellular fatty acids of strain L12M1T were iso-C15 : 0 and C20 : 4ω6,9,12,15c. The predominant isoprenoid quinone was MK-7. The major polyamines were spermidine, cadaverine and the minor polyamine was putrescine. The DNA G+C content was 32.1 mol%. The phylogenetic, phenotypic, biochemical, chemotaxonomic and genotypic results indicated that strain L12M1T represents a novel species of the genus Flammeovirga, for which the name Flammeovirga pectinis sp. nov. is proposed. The type strain is L12M1T (=KCTC 62750T=JCM 33169T).


Asunto(s)
Bacteroidetes/clasificación , Pectinidae/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Pigmentación , Poliaminas/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Int J Syst Evol Microbiol ; 69(10): 3148-3154, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31385778

RESUMEN

A novel Gram-stain-negative, non-spore-forming, obligate aerobic, motile, rod-shaped, and flagellated bacterium, designated S11R28T, was isolated from the intestinal tract of a Korean shiner, Coreoleuciscus splendidus. Based on 16S rRNA gene sequences, strain S11R28T was identified as member of the genus Undibacterium in class Betaproteobacteria, and was closely related to Undibacterium parvum DSM 23061T (98.49 %). The isolate grew at 4-25 °C, pH 6-9, with 0 % (w/v) NaCl, and grew optimally at 20 °C, pH 8, in the absence of NaCl. The main cellular fatty acids were C16 : 0 and summed features 3 (C16 : 1ω7c and/or C16 : 1ω6c). The strain possessed diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine as predominant polar lipids, and ubiquinone Q-8 as a respiratory quinone. The polyamine profile composed of 2-hydroxyputrescine, spermidine, putrescine, and benzoic acid. A genomic DNA G+C content was 51.4 mol%. The average nucleotide identity between strains S11R28T and U. parvum DSM 23061T was 78.66 %. Thus, Undibacterium piscinae can be considered a novel species within the genus Undibacterium with the type strain S11R28T (=KCTC 62668T=JCM 33224T).


Asunto(s)
Cyprinidae/microbiología , Intestinos/microbiología , Oxalobacteraceae/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Oxalobacteraceae/aislamiento & purificación , Fosfolípidos/química , Poliaminas/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
15.
Int J Syst Evol Microbiol ; 69(9): 2948-2953, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31282852

RESUMEN

A novel Gram-stain-negative, facultatively anaerobic, non-motile, non-violet-pigmented, rod-shaped bacterium, designated strain H11R3T, was isolated from the feces of Oriental stork, Ciconia boyciana, collected from Seoul Grand Park Zoo, Republic of Korea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that H11R3T formed a monophyletic clade with Iodobacter fluviatilisDSM 3764T, Iodobacter arcticusDSM 100243T, and Iodobacter limnosediminisDSM 103822T, with sequence similarities of 98.8, 98.6 and 98.4 %, respectively. H11R3T grew optimally at 15 °C, pH 8, with 0.5 % (w/v) NaCl. The predominant isoprenoid quinone was ubiquinone-8 (Q-8), and polar lipids included phosphatidylethanolamine, three unidentified lipids, four unidentified phospholipids, and two unidentified aminophospholipids. The major fatty acids were summed feature 3 and C16 : 0, and the DNA G+C content of the genome is 48.0 mol%. The average nucleotide identity (ANI) value between strains H11R3T and I. fluviatilis NCTC 11159T (=DSM 3764T) is 83.7 %. On the basis of phenotypic, genotypic, phylogenetic and chemotaxonomic characteristics, strain H11R3T represents a novel species of the genus Iodobacter for which the name Iodobacterciconiae sp. nov. is proposed. The type strain is H11R3T (=KCTC 62666T=JCM 33283T).


Asunto(s)
Betaproteobacteria/clasificación , Aves/microbiología , Filogenia , Animales , Animales de Zoológico/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Heces/microbiología , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
16.
Int J Syst Evol Microbiol ; 69(9): 2815-2822, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31251720

RESUMEN

A novel bacterial isolate, designated as strain BM15T, was isolated from the gastrointestinal tract of a blood cockle, Tegillarca granosa, which was collected from the foreshore of Beolgyo-eup, Republic of Korea. Strain BM15T was Gram-stain-negative, non-motile, strictly aerobic and short-rod-shaped. Optimum growth of the isolate occurred at 20 °C, in the presence of 4 % (w/v) NaCl and at pH 6. The 16S rRNA gene sequence analysis showed that strain BM15T belonged to the genus Paracoccus and had more than 97 % 16S rRNA gene sequence similarity to 'Paracoccus zhejiangensis' J6 (97.40 % similarity) and Paracoccus lutimaris HDM-25T (97.04 %). The polar lipid profile of strain BM15T comprised phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified glycolipid and two unidentified lipids. The predominant respiratory quinone was ubiquinone-10. The major cellular fatty acid (>20 %) was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The complete genome sequence of strain BM15T comprised 3,759,866 bp with 62.2 mol% G+C content. The results of the phylogenetic, phenotypic and genotypic analyses indicated that strain BM15T represents a novel species in the genus Paracoccus, for which the name Paracoccus tegillarcae is proposed. The type strain is BM15T (=KCTC 72032T=JCM 33289T).


Asunto(s)
Cardiidae/microbiología , Tracto Gastrointestinal/microbiología , Paracoccus/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Glucolípidos/química , Hibridación de Ácido Nucleico , Paracoccus/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
17.
Artículo en Inglés | MEDLINE | ID: mdl-33616519

RESUMEN

A novel Gram-stain-negative, coccus-shaped, aerobic and motile bacterial strain, designated S12M18T, was isolated from the gut of the Korean turban shell, Turbo cornutus. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S12M18T belonged to the genus Pseudorhodobacter and had the highest 16S rRNA gene sequence similarity twith Pseudorhodobacter aquimaris HDW-19T (98.63 %). The phylogenomic tree congruently verified that strain S12M18T occupies a taxonomic position within the genus Pseudorhodobacter. The OrthoANIu value between strain S12M18T and P. aquimaris HDW-19T was 87.22 %. The major cellular fatty acid of strain S12M18T was summed feature 8 (C18 : 1 ω7c or C18 : 1 ω6c). The major components of the polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The predominant isoprenoid quinone was Q-10. The DNA G+C content was 57.8 mol%. The polyphasic analyses indicated that strain S12M18T represents a novel species of the genus Pseudorhodobacter, for which the name Pseudorhodobacter turbinis sp. nov. is proposed. The type strain is S12M18T (=KCTC 62742T=JCM 33168T).

18.
Food Microbiol ; 76: 319-327, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30166157

RESUMEN

Fermented foods are considered as an integral part of the global human diet. Fermented foods also have unique microbial communities such as bacteria, archaea, fungi, and viruses that are essential to the fermentation process and affect final product characteristics. Despite the ecological importance of virus, little is known about the diversity and ecological role of virus in the food ecosystem. In this study, the viral and host bacterial communities from 10 representative samples of Korean and Chinese kimchi were analyzed in triplicate using next-generation sequencing technology. The overall structures of bacterial and viral communities were dominated by lactic acid bacteria in phylum Firmicutes and bacteriophages in order Caudovirales, respectively. For the single-stranded DNA (ssDNA) viruses, bacteriophage in family Microviridae were dominant in Korean kimchi. After correction for multiple comparisons using false discovery rate (FDR, P < 0.05), the relative abundances of 6 bacterial taxa and 33 viral host taxa at the genus level were significantly different between Korean and Chinese kimchi. Notably, in beta-diversity analysis, viral communities were much more clearly separated according to their geographical origin (PERMANOVA pseudo-F = 11.57, P < 0.001 in Bray-Curtis PCoA) than bacterial communities (pseudo-F = 4.75, P < 0.001 in unweighted UniFrac PCoA). Thus, viral metagenomics represents a potentially useful in-depth analytical method for determining the geographical origins of fermented foods.


Asunto(s)
Alimentos Fermentados/microbiología , Alimentos Fermentados/virología , Microbiota/genética , Verduras/microbiología , Verduras/virología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/virología , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Brassica/microbiología , ADN Bacteriano/genética , ADN Viral/genética , Microbiología de Alimentos , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactobacillales/genética , Lactobacillales/aislamiento & purificación , Lactobacillales/virología , Metagenómica , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Int J Syst Evol Microbiol ; 68(6): 2068-2073, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29722644

RESUMEN

A Gram-stain-negative, aerobic, catalase- and oxidase-positive, rod-shaped, flagellated bacterial strain, designated AMac2203T, was isolated from the gut of the cinereous vulture, Aegypiusmonachus, collected from the Seoul Grand Park Zoo, Republic of Korea. Strain AMac2203T grew optimally at 15-25 °C, pH 7-8 and in the presence of 3-5 % (w/v) NaCl. Phylogenetic analysis revealed 97.4-97.9 % and 96.9-97.3 % sequence similarities of the 16S rRNA genes to its counterparts in Oceanisphaera profunda SM1222T and Oceanisphaera ostreae T-w6T, respectively. The predominant fatty acids (>10 %) of strain AMac2203T were summed feature 3 (C16 : 0ω7c and/or C16 : 1ω6c, 33.6 %), summed feature 8 (C18 : 1ω7c, 24.5 %) and C16 : 0 (19.9 %). The primary isoprenoid quinone was ubiquinone-8. Polar lipids included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified amino lipid and an unidentified lipid. Based on complete genome sequencing of strain AMac2203T and the closest related type strain, O. profunda, the OrthoANI value is 77.5 %, which is below the 95 % cut-off for species demarcation. The genomic DNA G+C content of strain AMac2203T is 47.1 mol%. Thus, strain AMac2203T represents a novel species candidate of the genus Oceanisphaera. We propose the name Oceanisphaeraavium sp. nov., with strain AMac2203T (=KCTC 62118T=JCM 32207T) as the type strain.


Asunto(s)
Aeromonadaceae/clasificación , Falconiformes/microbiología , Tracto Gastrointestinal/microbiología , Filogenia , Aeromonadaceae/genética , Aeromonadaceae/aislamiento & purificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
20.
Int J Syst Evol Microbiol ; 68(5): 1659-1664, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29561257

RESUMEN

A Gram-stain-positive, facultatively aerobic, spore-forming, oxidase-positive, catalase- and DNase-negative, rod-shaped and motile bacterial strain, AR23208T, was isolated from the gut of a cinereous vulture (Aegypius monachus), collected at Seoul Grand Park Zoo (Republic of Korea). Strain AR23208T grew optimally at 25-30 °C, at pH 7 and in the absence of NaCl. Phylogenetic analysis revealed that strain AR23208T shared 98.2 and 97.1 % 16S rRNA gene sequence similarity with Tumebacillus algifaecis THMBR28T and Tumebacilluslipolyticus NIO-S10T, respectively. The predominant fatty acids (>10 %) of strain AR23208T were iso-C15 : 0, summed feature 4 (anteiso-C17 : 1 B and/or iso-C17 : 1 I) and anteiso-C15 : 0 and the primary isoprenoid quinone was menaquinone-7. The polar lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, six unidentified phospholipids, an unidentified aminophospholipid and ten unidentified lipids. The sugar components of the cell wall peptidoglycan were ribose and arabinose. The amino acids of the cell wall peptidoglycan were l-alanine, aspartic acid, meso-diaminopimelic acid, l-glutamic acid, glycine and l-lysine. The OrthoANI value based on the complete genome sequence of strain AR23208T and the closest related strain, T. algifaecis THMBR28T, was 80.4 %. The genomic DNA G+C content of strain AR23208T was 56.0 mol%. Based on the data presented in the current study, strain AR23208T is considered to represent a novel species of the genus Tumebacillus, for which the name Tumebacillus avium sp. nov. is proposed. The type strain is AR23208T (=KCTC 33929T=JCM 32188T).


Asunto(s)
Bacillales/clasificación , Falconiformes/microbiología , Tracto Gastrointestinal/microbiología , Filogenia , Animales , Bacillales/genética , Bacillales/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...