Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040158

RESUMEN

It is not known why there is increased risk to have seizures with increased anxiety and stress after traumatic brain injury (TBI). Stressors cause the release of corticotropin-releasing factor (CRF) both from the hypothalamic pituitary adrenal (HPA) axis and from CNS neurons located in the central amygdala and GABAergic interneurons. We have previously shown that CRF signaling is plastic, becoming excitatory instead of inhibitory after the kindling model of epilepsy. Here, using Sprague Dawley rats we have found that CRF signaling increased excitability after TBI. Following TBI, CRF type 1 receptor (CRFR1)-mediated activity caused abnormally large electrical responses in the amygdala, including fast ripples, which are considered to be epileptogenic. After TBI, we also found the ripple (120-250 Hz) and fast ripple activity (>250 Hz) was cross-frequency coupled with θ (3-8 Hz) oscillations. CRFR1 antagonists reduced the incidence of phase coupling between ripples and fast ripples. Our observations indicate that pathophysiological signaling of the CRFR1 increases the incidence of epileptiform activity after TBI. The use for CRFR1 antagonist may be useful to reduce the severity and frequency of TBI associated epileptic seizures.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hormona Liberadora de Corticotropina/metabolismo , Epilepsia , Sistema Límbico/fisiopatología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Psicológico , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Epilepsia/metabolismo , Epilepsia/fisiopatología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología
2.
Behav Pharmacol ; 29(2 and 3-Spec Issue): 211-224, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29194070

RESUMEN

Long-term treatment of rats with the D2/D3 dopamine agonist quinpirole induces compulsive checking (proposed as animal model of obsessive-compulsive disorder) and locomotor sensitization. The mechanisms by which long-term use of quinpirole produces those behavioral transformations are not known. Here we examined whether changes in gut microbiota play a role in these behavioral phenomena, by monitoring the development of compulsive checking and locomotor sensitization at the same time as measuring the response of gut microbiota to chronic quinpirole injections. Two groups of rats received nine injections of saline (n=16) or quinpirole (n=15; 0.25 mg/kg), at weekly intervals for the first 5 weeks and then two injections per week until the end of treatment. After each injection, rats were placed on a large open field for 55 min, and their behavior was video recorded for subsequent analysis. Fecal matter was collected after each trial and frozen for bacterial community profiling of the 16S rRNA gene, using paired-end reads of the V3 region. The results indicated that the induction of locomotor sensitization and compulsive checking was accompanied by changes in several communities of bacteria belonging to the order Clostridiales (class Clostridia, phylum Firmicutes), and predominantly in Lachnospiraceae and Ruminococcaceae families of bacteria. It is suggested that changes in these microbes may serve to support the energy use requirements of compulsive checking and obsessive-compulsive disorder.


Asunto(s)
Conducta Compulsiva/fisiopatología , Microbioma Gastrointestinal/fisiología , Locomoción/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Conducta Compulsiva/inducido químicamente , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Microbioma Gastrointestinal/genética , Locomoción/fisiología , Masculino , Actividad Motora/efectos de los fármacos , Trastorno Obsesivo Compulsivo/inducido químicamente , Quinpirol/farmacología , ARN Ribosómico 16S , Ratas , Ratas Long-Evans , Receptores Dopaminérgicos/fisiología , Conducta Estereotipada/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA