Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Int J Mol Med ; 53(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38695243

Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low­dose radiation­sensitive markers. The HuT 78 and IM­9 cell lines were irradiated in a concentration­dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration­dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an in vivo model was employed using sub­lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub­lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML­277, pifithrin­α, and nutlin­3a were evaluated for their ability to modulate radiation­induced cell death. The use of BML­277 led to a decrease in radiation­induced p­CHK2 and γH2AX levels and mitigated radiation­induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation­sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.


Ataxia Telangiectasia Mutated Proteins , DNA Damage , Radiation, Ionizing , Signal Transduction , DNA Damage/radiation effects , DNA Damage/drug effects , Humans , Animals , Signal Transduction/drug effects , Signal Transduction/radiation effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Mice , Checkpoint Kinase 2/metabolism , Checkpoint Kinase 2/genetics , Histones/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Male , Imidazoles/pharmacology , Radiation-Protective Agents/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Radiation
2.
Am J Cancer Res ; 13(12): 5966-5980, 2023.
Article En | MEDLINE | ID: mdl-38187056

Radiotherapy (RT) is a commonly used treatment option for patients with cancer because it can effectively control tumor growth and kill tumor cells. However, the impact of RT goes beyond direct tumor cell killing because it can change the tumor microenvironment by altering surrounding tissues and infiltrating cells and modulating the expression of immune checkpoints. Poliovirus receptor (PVR, cluster of differentiation (CD)155), a member of the nectin-like molecule family, is overexpressed in many human cancers. However, its role in the tumor growth and T-cell immune responses of triple-negative breast cancer (TNBC) remains unclear. In the present study, we observe that radiation exposure increases PVR expression in MDA-MB-231 and BT549 cells. Silencing PVR not only inhibited the proliferation of breast cancer cells but also significantly enhanced the cytotoxicity of cytotoxic T lymphocytes (CTLs) compared with the control or RT groups. Treatment of T cells with PVR decreased CD8+ T cells, increased CD4+ T cells, and induced PVR ligands such as T cell immunoreceptor with immunoglobulin and ITIM domain, CD226, and CD96. However, after treatment with PVR, CTL responses decreased and secretion of interferon-γ, tumor necrosis factor-α, interleukin (IL)-2, IL-6, and IL-10 was significantly inhibited. In contrast, PVR knockdown increased the production of these cytokines, illustrating the immunosuppressive function of PVR. Suppression of PVR using an anti-PVR antibody inhibited 4T1 tumor growth by increasing immune cell infiltration. These results provide new insights into the role of PVR in TNBC and highlight its potential as a target for T cell-mediated immunotherapy in breast cancer.

3.
Am J Cancer Res ; 12(6): 2594-2611, 2022.
Article En | MEDLINE | ID: mdl-35812053

The survival and death of eukaryotic cells are tightly controlled by a variety of proteins in response to the cellular environment. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a receptor-interacting Ser/Thr kinase that has recently been reported as an important regulator of cell survival, apoptosis, and necroptosis; however, its role in liver cancer remains unclear. In this study, we examined the effect of siRNA-mediated RIPK1 knockdown on the survival and death of liver cancer cells. Treatment with siRIPK1 decreased the growth rate of liver cancer cells and increased apoptotic, but not necrotic cell death, which was higher in wild-type p53 (wt-p53) cells than in mutant-type p53 (mt-p53) cells. In addition, RIPK1 knockdown increased p53 expression and G1 phase arrest in wt-p53 cells. Although suppressing p53 did not alter RIPK1 expression, it did attenuate siRIPK1-induced cell death. Interestingly, RIPK1 knockdown also increased the generation of reactive oxygen species and DNA damage by inhibiting signal transduced and activator of transcription 3 (STAT3) and ATM and RAD3-related (ATR) in wt-p53 cells but not in mt-p53 cells. Moreover, STAT3 or ATR inhibition in p53 mutant cells restored siRIPK1-mediated cell death. Together, the results of this study suggest that RIPK1 suppression induces apoptotic cell death by inhibiting the STAT3/ATR axis in a p53-dependent manner. Furthermore, these findings suggest that RIPK1, alone or in combination, may be a promising target for treating liver cancer.

4.
Cancers (Basel) ; 14(2)2022 Jan 12.
Article En | MEDLINE | ID: mdl-35053535

Our previous work demonstrated that (E)-N-benzyl-6-(2-(3, 4-dihydroxybenzylidene) hydrazinyl)-N-methylpyridine-3-sulfonamide (BHMPS), a novel synthetic inhibitor of Rab27aSlp(s) interaction, suppresses tumor cell invasion and metastasis. Here, we aimed to further investigate the mechanisms of action and biological significance of BHMPS. BHMPS decreased the expression of epithelial-mesenchymal transition transcription factors through inhibition of focal adhesion kinase and c-Jun N-terminal kinase activation, thereby reducing the migration and invasion of breast cancer. Additionally, knockdown of Rab27a inhibited tumor migration, with changes in related signaling molecules, whereas overexpression of Rab27a reversed this phenomenon. BHMPS effectively prevented the interaction of Rab27a and its effector Slp4, which was verified by co-localization, immunoprecipitation, and in situ proximity ligation assays. BHMPS decreased the secretion of epidermal growth factor receptor and fibronectin by interfering with vesicle trafficking, as indicated by increased perinuclear accumulation of CD63-positive vesicles. Moreover, administration of BHMPS suppressed tumor growth in Rab27a-overexpressing MDA-MB-231 xenograft mice. These findings suggest that BHMPS may be a promising candidate for attenuating tumor migration and invasion by blocking Rab27a-mediated exocytosis.

5.
Cancers (Basel) ; 12(5)2020 Apr 30.
Article En | MEDLINE | ID: mdl-32365904

Low-dose irradiation (LDI) has recently been shown to have various beneficial effects on human health, such as on cellular metabolic activities, DNA repair, antioxidant activity, homeostasis potency, and immune activation. Although studies on the immunogenic effects of LDI are rapidly accumulating, clinical trials for cancer treatment are considered premature owing to the lack of available preclinical results and protocols. Here, we aim to investigate anti-tumor and anti-metastatic effects of whole-body LDI in several tumor-bearing mouse models. Mice were exposed to single or fractionated whole-body LDI prior to tumor transplantation, and tumor growth and metastatic potential were determined, along with analysis of immune cell populations and expression of epithelial-mesenchymal transition (EMT) markers. Whole-body fractionated-LDI decreased tumor development and lung metastasis not only by infiltration of CD4+, CD8+ T-cells, and dendritic cells (DCs) but also by attenuating EMT. Moreover, a combination of whole-body LDI with localized high-dose radiation therapy reduced the non-irradiated abscopal tumor growth and increased infiltration of effector T cells and DCs. Therefore, whole-body LDI in combination with high-dose radiation therapy could be a potential therapeutic strategy for treating cancer.

6.
J Cell Mol Med ; 24(1): 830-840, 2020 01.
Article En | MEDLINE | ID: mdl-31692229

Pulmonary fibrosis (PF) is chronic and irreversible damage to the lung characterized by fibroblast activation and matrix deposition. Although recently approved novel anti-fibrotic agents can improve the lung function and survival of patients with PF, the overall outcomes remain poor. In this study, a novel imidazopurine compound, 3-(2-chloro-6-fluorobenzyl)-1,6,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (IM-1918), markedly inhibited transforming growth factor (TGF)-ß-stimulated reporter activity and reduced the expression of representative fibrotic markers, such as connective tissue growth factor, fibronectin, collagen and α-smooth muscle actin, on human lung fibroblasts. However, IM-1918 neither decreased Smad-2 and Smad-3 nor affected p38MAPK and JNK. Instead, IM-1918 reduced Akt and extracellular signal-regulated kinase 1/2 phosphorylation increased by TGF-ß. Additionally, IM-1918 inhibited the phosphorylation of fibroblast growth factor receptors 1 and 3. In a bleomycin-induced murine lung fibrosis model, IM-1918 profoundly reduced fibrotic areas and decreased collagen and α-smooth muscle actin accumulation. These results suggest that IM-1918 can be applied to treat lung fibrosis.


Enzyme Inhibitors/pharmacology , Imidazoles/chemistry , Pulmonary Fibrosis/drug therapy , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Transforming Growth Factor beta/metabolism , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Fibronectins/genetics , Fibronectins/metabolism , Male , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Transforming Growth Factor beta/genetics
7.
Technol Cancer Res Treat ; 18: 1533033819868225, 2019 01 01.
Article En | MEDLINE | ID: mdl-31401938

OBJECTIVE: Tumor-treating fields are currently used to successfully treat various cancers; however, the specific pathways associated with its efficacy remain unknown in the immune responses. Here, we evaluated tumor-treating fields-mediated initiation of the macrophage-specific immune response. MATERIALS AND METHODS: We subjected RAW 264.7 mouse macrophages to clinically relevant levels of tumor-treating fields (0.9 V/cm, 150 kHz) and evaluated alterations in cytokine expression and release, as well as cell viability. Additionally, we investigated the status of immunomodulatory pathways to determine their roles in tumor-treating fields-mediated immune activation. RESULTS AND DISCUSSION: Our results indicated that tumor-treating fields treatment at 0.9 V/cm decreased cell viability and increased cytokine messenger RNA/protein levels, as well as levels of nitric oxide and reactive oxygen species, relative to controls. The levels of tumor necrosis factor α, interleukin 1ß, and interleukin 6 were markedly increased in tumor-treating fields-treated RAW 264.7 cells cocultured with 4T1 murine mammary carcinoma cells compared with those in 4T1 or RAW 264.7 cells with or without tumor-treating fields treatment. Moreover, the viability of 4T1 cells treated with the conditioned medium of tumor-treating fields-stimulated RAW 264.7 cells decreased, indicating that macrophage activation by tumor-treating fields effectively killed the tumor cells. Moreover, tumor-treating fields treatment activated the nuclear factor κB and mitogen-activated protein kinase pathways involved in immunomodulatory signaling. CONCLUSION: These results provide critical insights into the mechanisms through which tumor-treating fields affect macrophage-specific immune responses and the efficacy of this method for cancer treatment.


Histocompatibility Antigens Class II/immunology , Macrophage Activation/immunology , Magnetic Field Therapy , Neoplasms/radiotherapy , Animals , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/radiation effects , Humans , MAP Kinase Signaling System/radiation effects , Macrophage Activation/genetics , Macrophage Activation/radiation effects , Macrophages/immunology , Macrophages/radiation effects , Mice , NF-kappa B/genetics , Neoplasms/immunology , Neoplasms/pathology , RAW 264.7 Cells , Signal Transduction/immunology , Signal Transduction/radiation effects
8.
J Pharmacol Exp Ther ; 370(3): 514-527, 2019 09.
Article En | MEDLINE | ID: mdl-31253693

Radiotherapy is one of the most common treatments for cancer, but radioresistance and injury to normal tissue are considered major obstacles to successful radiotherapy. Thus, there is an urgent need to develop radiosensitizers to improve the therapeutic outcomes of radiotherapy in cancer patients. Our previous efforts to identify novel radiosensitizers, using high-throughput screening targeting p53 and Nrf2 revealed a promising N-phenylpyrimidin-2-amine (PPA) lead compound. In the present study, 17 derivatives of this lead compound were examined, and it was found that 4-(4-fluorophenyl)-N-(4-nitrophenyl)-6-phenylpyrimidin-2-amine (PPA5), 4-((4-(4-fluorophenyl)pyrimidin-2-yl)amino)-3-methoxy-N-methyl -benzamide (PPA13), 4-((4-(4-fluorophenyl)pyrimidin-2-yl)amino)benzenesulfonamide (PPA14), 4-((4-(2-chlorophenyl)pyrimidin-2-yl)amino)benzenesulfonamide (PPA15), and 4-((4-(2-chlorophenyl)pyrimidin-2-yl)amino)-N-methylbenzamide (PPA17) inhibited cell viability by more than 50%, with a marked increase in the proportion of cells arrested at the G2/M phase of cell cycle. Among these compounds, PPA15 markedly increased the sub-G1 cell population and increased the levels of cyclin B1 and the phosphorylation levels of cyclin-dependent kinase (CDK) 1. Combined treatment with radiation and PPA14 or PPA15 significantly decreased clonogenic survival. An in vitro kinase assay revealed that PPA15 inhibited multiple CDKs involved in cell cycle regulation. Compared with drug or radiation treatment alone, combined treatment with PPA15 and radiation resulted in the suppression of A549 tumor growth in mice by 59.5% and 52.7%, respectively. Treatment with PPA15 alone directly inhibited tumor growth by 25.7%. These findings suggest that the novel pan CDK inhibitor, PPA15, may be a promising treatment to improve the effectiveness of radiotherapy for the treatment of cancer. SIGNIFICANCE STATEMENT: Several inhibitors of CDK have been successfully evaluated in combination with other chemotherapeutics in clinical trials, but negative side effects have partially restricted their clinical use. In this study, we identified a novel pan-CDK inhibitor to increase radiosensitivity, and we hope this work will encourage the development of promising small-molecule radiosensitizers.


Cell Cycle/drug effects , Lung Neoplasms/pathology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Female , Humans , Mice , Xenograft Model Antitumor Assays
9.
Int J Mol Sci ; 20(11)2019 Jun 11.
Article En | MEDLINE | ID: mdl-31212646

Ionizing radiation (IR) has been widely used in the treatment of cancer. Radiation-induced DNA damage triggers the DNA damage response (DDR), which can confer radioresistance and early local recurrence by activating DNA repair pathways. Since karyopherin-α2 (KPNA2), playing an important role in nucleocytoplasmic transport, was significantly increased by IR in our previous study, we aimed to determine the function of KPNA2 with regard to DDR. Exposure to radiation upregulated KPNA2 expression in human colorectal cancer HT29 and HCT116 cells and breast carcinoma MDA-MB-231 cells together with the increased expression of DNA repair protein BRCA1. The knockdown of KPNA2 effectively increased apoptotic cell death via inhibition of BRCA1 nuclear import following IR. Therefore, we propose that KPNA2 is a potential target for overcoming radioresistance via interruption to DDR.


BRCA1 Protein/metabolism , Cell Death/radiation effects , Cell Survival/physiology , alpha Karyopherins/metabolism , Apoptosis/radiation effects , BRCA1 Protein/genetics , Blotting, Western , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/genetics , Comet Assay , DNA Damage/radiation effects , DNA Repair/radiation effects , HCT116 Cells , HT29 Cells , Humans , Immunoprecipitation , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Radiation, Ionizing
10.
BMB Rep ; 52(5): 330-335, 2019 May.
Article En | MEDLINE | ID: mdl-30982500

Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx. [BMB Reports 2019; 52(5): 330-335].


Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Doxorubicin/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Trans-Activators/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Humans , Liver Neoplasms/genetics , Signal Transduction , Trans-Activators/genetics , Transcriptional Activation , Up-Regulation , Viral Regulatory and Accessory Proteins
11.
Int J Oncol ; 51(5): 1583-1589, 2017 Nov.
Article En | MEDLINE | ID: mdl-29048635

Focal adhesion kinase 1 (FAK1) is known to promote tumor progression and metastasis by controlling cell movement, invasion, survival and the epithelial-to-mesenchymal transition in the tumor microenvironment. As recent reports imply that FAK1 is highly associated with tumor cell development and malignancy, the inhibition of FAK1 activity could be an effective therapeutic approach for inhibiting the growth and metastasis of tumor cells. In this study, we aimed to determine the effect of a novel synthetic FAK1 inhibitor 2-[2-(2-methoxy-4-morpholin-4-yl-phenylamino)-5-trifluoromethyl-pyrimidin-4-ylamino]-N-methyl-benzamide, (MPAP) on lung cancer cells. MPAP suppressed cancer cell proliferation and the phosphorylation of FAK1. Combined treatment with MPAP and irradiation (IR) showed enhanced suppression of cancer cell proliferation in wild-type p53 cells and more intense suppression in p53-null cells. In addition, the combination treatment effectively induced G1 cell cycle arrest in a p53-independent manner. In an in vivo tumor xenograft mouse model, treatment with both MPAP and IR reduced tumor growth more than the treatment with IR or MPAP alone. Overall, these data demonstrate that the radiosensitizing effect of MPAP is mediated by the regulation of retinoblastoma protein (RB) phosphorylation in a p53-independent manner.


Focal Adhesion Kinase 1/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Radiation Tolerance/drug effects , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Benzamides/administration & dosage , Benzamides/chemical synthesis , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/radiation effects , Focal Adhesion Kinase 1/genetics , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/radiation effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Radiation , Radiation Tolerance/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
12.
Toxicol Appl Pharmacol ; 333: 17-25, 2017 10 15.
Article En | MEDLINE | ID: mdl-28818514

Although favorable immune responses to low-dose irradiation (LDI) have been observed in normal mice, i.e., a hormesis effect, little is known about the effects of LDI in infectious diseases. In this study, we examined the effects of LDI on mice with sepsis, a severe and often lethal hyperinflammatory response to bacteria. Female C57BL/6 mice were whole-body irradiated with 10cGy 48h before Escherichia coli infection, and survival, bacterial clearance, cytokines, and antioxidants were quantified. LDI pretreatment significantly increased survival from 46.7% in control mice to 75% in mice with sepsis. The bacterial burden was significantly lower in the blood, spleen, and kidney of LDI-treated mice than in those of control septic mice. The levels of pro-inflammatory cytokines, e.g., IL-1ß and IL-6, as well as anti-inflammatory IL-10 were markedly reduced in pre-LDI septic mice. Nitric oxide production by peritoneal macrophages was also reduced in pre-LDI septic mice. Immune cells in the spleen increased and Nrf2 and HO-1 were induced in pre-LDI septic mice. LDI stimulates the immune response and minimizes lethality in septic mice via enhanced bacterial clearance and reduced initial proinflammatory responses.


Escherichia coli Infections/radiotherapy , Sepsis/radiotherapy , Whole-Body Irradiation , Animals , Colony Count, Microbial , Cytokines/blood , Escherichia coli/isolation & purification , Escherichia coli Infections/blood , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Female , Kidney/microbiology , Kidney/radiation effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/radiation effects , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism , RAW 264.7 Cells , Sepsis/blood , Sepsis/immunology , Sepsis/microbiology , Spleen/microbiology , Spleen/radiation effects
13.
Eur J Cell Biol ; 95(6-7): 219-27, 2016.
Article En | MEDLINE | ID: mdl-27107455

Accumulating evidence suggests the potential for radiation therapy to generate antitumor immune responses against tumor cells by inducing immunogenic cell death and phenotypic changes. We recently found that ionizing radiation upregulated karyopherin α2 (KPNA2) in HT-29 colorectal tumor cells using quantitative proteomic analysis. To determine whether this increased KPNA2 could function as a damage-associated molecular pattern to induce antitumor immune responses, mouse bone-marrow-derived dendritic cells (BMDCs) were treated with KPNA2. KPNA2 enhanced the surface expression of CD40, CD54, CD80, CD86, and MHC class I/II on BMDCs. DCs treated with KPNA2 exhibited increased secretion of pro-inflammatory cytokines such as IL-1ß, IL-6, IL-12, IL-23, and TNF-α. Co-culture of CD4(+) T cells and KPNA2-treated DCs resulted in induction of Th1/17 cytokines (IFN-γ and IL-17) and reduction of TGF-ß production. Moreover, KPNA2-treated DCs were capable of increasing granzyme B and perforin expression in cytotoxic T lymphocytes. These results demonstrated that radiation-induced dying colorectal cancer cells released considerable amounts of KPNA2 that induce the maturation and activation of DCs for synergistic antitumor effect of radiation.


Colorectal Neoplasms/immunology , Colorectal Neoplasms/radiotherapy , Dendritic Cells/immunology , Nuclear Proteins/immunology , alpha Karyopherins/immunology , Animals , Cell Death/physiology , Cell Death/radiation effects , Cell Differentiation/physiology , Cell Differentiation/radiation effects , Cell Proliferation/physiology , Cell Proliferation/radiation effects , Colorectal Neoplasms/pathology , Dendritic Cells/radiation effects , Female , HT29 Cells , Humans , Mice , Mice, Inbred BALB C , Nuclear Proteins/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/radiation effects , Up-Regulation/radiation effects , alpha Karyopherins/metabolism
14.
Oxid Med Cell Longev ; 2016: 6823471, 2016.
Article En | MEDLINE | ID: mdl-26904167

Although many studies have examined the roles of hypoxia and transforming growth factor- (TGF-) ß separately in the tumor microenvironment, the effects of simultaneous treatment with hypoxia/reoxygenation and TGF-ß on tumor malignancy are unclear. Here, we investigated the effects of redox signaling and oncogenes on cell proliferation and radioresistance in A549 human lung cancer cells in the presence of TGF-ß under hypoxia/reoxygenation conditions. Combined treatment with TGF-ß and hypoxia activated epidermal growth factor receptor (EGFR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a redox-sensitive transcription factor. Interestingly, Nrf2 knockdown suppressed the effects of combined treatment on EGFR phosphorylation. In addition, blockade of EGFR signaling also suppressed induction of Nrf2 following combined treatment with hypoxia and TGF-ß, indicating that the combined treatment induced positive crosstalk between Nrf2 and EGFR. TGF-ß and hypoxia/reoxygenation increased the accumulation of reactive oxygen species (ROS), while treatment with N-acetyl-l-cysteine abolished the activation of Nrf2 and EGFR. Treatment with TGF-ß under hypoxic conditions increased the proliferation of A549 cells compared with that after vehicle treatment. Moreover, cells treated with the combined treatment exhibited resistance to ionizing radiation (IR), and knockdown of Nrf2 increased IR-induced cell death under these conditions. Thus, taken together, our findings suggested that TGF-ß and hypoxia/reoxygenation promoted tumor progression and radioresistance of A549 cells through ROS-mediated activation of Nrf2 and EGFR.


ErbB Receptors/metabolism , NF-E2-Related Factor 2/metabolism , Oxygen/pharmacology , Radiation Tolerance/drug effects , Transforming Growth Factor beta/pharmacology , A549 Cells , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Hypoxia/drug effects , Humans , Ligands , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Models, Biological , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tumor Microenvironment/drug effects
15.
Bioorg Med Chem Lett ; 26(4): 1322-8, 2016 Feb 15.
Article En | MEDLINE | ID: mdl-26810259

Rab GTPases regulate various types of intracellular membrane trafficking in all eukaryotes. Since Rab27a and its multiple effectors are involved in exocytosis of lysosome-related organelles and play a major role in malignancy, compounds targeting Rab27a could be likely used to inhibit invasive growth and tumor metastasis. Thus, we designed and synthesized several compounds based on the previously reported Rab27a-targeting synthetic compounds identified by virtual screening, and investigated their anti-metastatic effects in MDA-MB231 and A375 cells. Among the synthesized compounds, (E)-N-(3-chlorophenyl)-6-(2-(3,4-dihydroxy benzylidene)hydrazinyl)pyridine-3-sulfonamide (3d) and (E)-N-benzyl-6-(2-(3,4-dihydroxy benzylidene)hydrazinyl)-N-methylpyridine-3-sulfonamide (3f) significantly inhibited the invasiveness of both tumor cell lines. Compounds 3d and 3f also decreased the levels of signature extracellular matrix marker proteins (fibronectin, collagen, and α-smooth muscle actin) and representative mesenchymal cell markers (N-cadherin and vimentin). Taken together, our results suggest that novel sulfonamide analogs have anti-metastatic activity in breast and melanoma cancer cell lines and may be used as therapeutic agents to treat malignant cancer.


Antineoplastic Agents/chemistry , Sulfonamides/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Binding Sites , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Extracellular Matrix Proteins/metabolism , Humans , Molecular Docking Simulation , Protein Structure, Tertiary , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Vimentin/metabolism , rab GTP-Binding Proteins/antagonists & inhibitors , rab GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins
16.
Int J Oncol ; 47(5): 1845-53, 2015 Nov.
Article En | MEDLINE | ID: mdl-26397987

Mitochondrial dysfunction has been found to be associated with various pathological conditions, particularly cancer. However, the mechanisms underlying tumor malignancy induced by mitochondrial dysfunction are not fully understood. In the present study, the effects of mitochondrial dysfunction on epithelial-mesenchymal transition (EMT), were investigated using mitochondrial-depleted ρ(0) cells derived from the Hep3B hepatocarcinoma cell line. The Hep3B/ρ(0) cells displayed the EMT phenotype with more aggressive migration and higher invasiveness compared to their parental cells. The Hep3B/ρ(0) cells also showed typical expression pattern of EMT markers such as vimentin and E-cadherin. These phenotypes in Hep3B/ρ(0) cells were mediated by increased transforming growth factor-ß (TGF-ß) through the canonical Smad-dependent signaling pathway. Additionally, TGF-ß signaling was activated via induction of c-Jun/AP-1 expression and activity. Therefore, mitochondrial dysfunction induces EMT through TGF-ß/Smad/Snail signaling via c-Jun/AP-1 activation. These results indicate that mitochondrial dysfunction plays an important role in the EMT process and could be a novel therapeutic target for malignant cancer therapy.


Carcinoma, Hepatocellular/genetics , JNK Mitogen-Activated Protein Kinases/genetics , Liver Neoplasms/genetics , Transcription Factor AP-1/genetics , Transforming Growth Factor beta/genetics , Cadherins/biosynthesis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Humans , Liver Neoplasms/pathology , Mitochondria/genetics , Mitochondria/pathology , Signal Transduction , Smad Proteins/genetics , Snail Family Transcription Factors , Transcription Factors/genetics
17.
Oncol Rep ; 34(5): 2731-7, 2015 Nov.
Article En | MEDLINE | ID: mdl-26351897

Triple-negative breast cancer (TNBC) is an aggressive cancer with a poor prognosis due to its epithelial­to-mesenchymal transition (EMT) phenotype. Cancer patients often experience several detrimental effects of cancer treatment, such as chemoresistance, radioresistance and the maintenance of cancer stem cells due to EMT. Thus, EMT signaling is considered to be a valuable therapeutic target for cancer treatment, and its inhibition is being attempted as a new treatment option for TNBC patients. Previously, we showed that 3-(2-chlorobenzyl)-1,7-dimethyl-1H-imidazo[2,1-f]purine­2,4(3H,8H)-dione (IM-412) inhibits transforming growth factor-ß (TGF-ß)-induced differentiation of human lung fibroblasts through both Smad-dependent and -independent pathways. In the present study, we examined the inhibitory effect of IM-412 on EMT pathways and invasiveness in TNBC cells since the TGF-ß signaling pathway is a typical signaling pathway that functions in EMT. IM-412 not only potently suppressed the migration and invasion of MDA-MB-231 cells, but also lowered the expression of mesenchymal markers and EMT-activating transcription factors in these cells. IM-412 inhibited the activation of several signaling proteins, including Smad2/Smad3, p38MAPK, Akt and JNK, and it also attenuated the phosphorylation of FGFR1 and FGFR3. Collectively, our findings suggest that the synthetic compound IM-412 suppressed the EMT process in MDA-MB-231 cells and thereby effectively inhibited the migration and invasion of these cancer cells. Thus, IM-412 could serve as a novel therapeutic agent for malignant cancers.


Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition/drug effects , Imidazoles/pharmacology , Purines/pharmacology , Signal Transduction/drug effects , Triple Negative Breast Neoplasms/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Phosphorylation/drug effects , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Transforming Growth Factor beta/pharmacology , Triple Negative Breast Neoplasms/pathology
18.
Int J Radiat Biol ; 91(10): 795-803, 2015.
Article En | MEDLINE | ID: mdl-26136089

PURPOSE: In contrast to high-dose therapeutic irradiation, definitive research detailing the physiological effects of low-dose irradiation is limited. Notably, the immunological response elicited after low-dose irradiation remains controversial. MATERIALS AND METHODS: Female C57BL/6 mice were whole- body-irradiated with a single or three daily fractions up to a total dose of 0.1, 1, or 10 cGy. Blood and spleen were harvested 2, 7 and 14 days after irradiation. RESULTS: The splenic CD4(+) T cell subpopulations were temporarily increased at 2 days after single or fractionated irradiation, whereas the percentage of dendritic cells (DC) and macrophages was decreased. Whereas CD8(+) T cell populations were decreased in single-dose irradiated mice at day 7, early and sustained reduction of CD8(+) T cell numbers was observed in fractionated- dose-irradiated mice from day 2 until day 14. In addition, single-dose irradiation resulted in a Th1 cytokine expression profile, whereas fractionated-dose irradiation drove a Th2 shift. Additionally, increased expression of immune-related factors was observed at early time-points with single-dose irradiation, in contrast to the dose-independent induction following fractionated-dose irradiation. CONCLUSIONS: Our results demonstrate that low-dose irradiation modulates the immune response in mice, where the sensitivity and kinetics of the induced response vary according to the dosing method.


Cytokines/metabolism , Immune System/cytology , Radiation Dosage , Spleen/cytology , Spleen/immunology , Whole-Body Irradiation , Animals , Cell Count , Cytokines/genetics , Dose Fractionation, Radiation , Dose-Response Relationship, Radiation , Female , Gamma Rays , Gene Expression Regulation/radiation effects , Immune System/radiation effects , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Spleen/metabolism , Time Factors
19.
Cell Biosci ; 5: 2, 2015.
Article En | MEDLINE | ID: mdl-26056562

BACKGROUND: Radiotherapy is widely used to treat cancer alone or in combination with surgery, chemotherapy, and immunotherapy. However, damage to normal tissues and radioresistance of tumor cells are major obstacles to successful radiotherapy. Furthermore, the immune network around tumors appears to be connected to tumor progression and recurrence. METHODS: We investigated the cytosolic proteins produced by irradiated tumor cells by using a quantitative proteomic approach based on stable isotope labeling by amino acids in cell culture. MDA-MB-231 breast cancer cells were treated with a single or fractionated 10 Gray dose of (137)Cs γ-radiation, which was selected based on cell viability. RESULTS: Radiation-induced proteins were differentially expressed based on the fractionated times of radiation and were involved in multiple biological functions, including energy metabolism and cytoskeleton organization. We identified 46 proteins increased by at least 1.3-fold, and high ranks were determined for cathepsin D, gelsolin, arginino-succinate synthase 1, peroxiredoxin 5, and C-type mannose receptor 2. CONCLUSION: These results suggest that a number of tumor-derived factors upregulated by γ-radiation are promising targets for modulation of the immune response during radiation treatment.

20.
Cancer Lett ; 331(1): 76-83, 2013 Apr 30.
Article En | MEDLINE | ID: mdl-23246371

HBx is strongly associated with hepatocellular carcinoma development through transcription factor activation and reactive oxygen species (ROSs) production. However, the exact role of HBx during hepatocellular carcinogenesis is not fully understood. Recently, it was reported that C-terminal truncated HBx is associated with tumor metastasis. In the present study, we confirmed that the C-terminal region of HBx is required for ROS production and 8-oxoguanine (8-oxoG) formation, which is considered as a reliable biomarker of oxidative stress. These results suggest ROS production induced by the C-terminal region of HBx leads to mitochondrial DNA damage, which may play a role in HCC development.


Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic , DNA Damage , DNA, Mitochondrial/genetics , Liver Neoplasms/pathology , Mitochondria/pathology , Trans-Activators/metabolism , Blotting, Western , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Gene Expression Regulation , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Immunoenzyme Techniques , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Stress , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/genetics , Tumor Cells, Cultured , Viral Regulatory and Accessory Proteins
...