Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39001416

RESUMEN

Understanding signaling patterns of transformation and controlling cell phenotypes is a challenge of current biology. Here we applied a cell State Transition Assessment and Regulation (cSTAR) approach to a perturbation dataset of single cell phosphoproteomic patterns of multiple breast cancer (BC) and normal breast tissue-derived cell lines. Following a separation of luminal, basal, and normal cell states, we identified signaling nodes within core control networks, delineated causal connections, and determined the primary drivers underlying oncogenic transformation and transitions across distinct BC subtypes. Whereas cell lines within the same BC subtype have different mutational and expression profiles, the architecture of the core network was similar for all luminal BC cells, and mTOR was a main oncogenic driver. In contrast, core networks of basal BC were heterogeneous and segregated into roughly four major subclasses with distinct oncogenic and BC subtype drivers. Likewise, normal breast tissue cells were separated into two different subclasses. Based on the data and quantified network topologies, we derived mechanistic cSTAR models that serve as digital cell twins and allow the deliberate control of cell movements within a Waddington landscape across different cell states. These cSTAR models suggested strategies of normalizing phosphorylation networks of BC cell lines using small molecule inhibitors.

2.
Structure ; 31(7): 870-883.e5, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37167973

RESUMEN

Ras is a central cellular hub protein controlling multiple cell fates. How Ras interacts with a variety of potential effector proteins is relatively unexplored, with only some key effectors characterized in great detail. Here, we have used homology modeling based on X-ray and AlphaFold2 templates to build structural models for 54 Ras-effector complexes. These models were used to estimate binding affinities using a supervised learning regressor. Furthermore, we systematically introduced Ras "branch-pruning" (or branchegetic) mutations to identify 200 interface mutations that affect the binding energy with at least one of the model structures. The impacts of these branchegetic mutants were integrated into a mathematical model to assess the potential for rewiring interactions at the Ras hub on a systems level. These findings have provided a quantitative understanding of Ras-effector interfaces and their impact on systems properties of a key cellular hub.


Asunto(s)
Proteínas , Proteínas ras , Unión Proteica , Proteínas ras/genética , Proteínas ras/química , Proteínas ras/metabolismo , Mutación , Proteínas/metabolismo , Simulación de Dinámica Molecular
3.
Life Sci Alliance ; 6(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36894174

RESUMEN

Ras is a key switch controlling cell behavior. In the GTP-bound form, Ras interacts with numerous effectors in a mutually exclusive manner, where individual Ras-effectors are likely part of larger cellular (sub)complexes. The molecular details of these (sub)complexes and their alteration in specific contexts are not understood. Focusing on KRAS, we performed affinity purification (AP)-mass spectrometry (MS) experiments of exogenously expressed FLAG-KRAS WT and three oncogenic mutants ("genetic contexts") in the human Caco-2 cell line, each exposed to 11 different culture media ("culture contexts") that mimic conditions relevant in the colon and colorectal cancer. We identified four effectors present in complex with KRAS in all genetic and growth contexts ("context-general effectors"). Seven effectors are found in KRAS complexes in only some contexts ("context-specific effectors"). Analyzing all interactors in complex with KRAS per condition, we find that the culture contexts had a larger impact on interaction rewiring than genetic contexts. We investigated how changes in the interactome impact functional outcomes and created a Shiny app for interactive visualization. We validated some of the functional differences in metabolism and proliferation. Finally, we used networks to evaluate how KRAS-effectors are involved in the modulation of functions by random walk analyses of effector-mediated (sub)complexes. Altogether, our work shows the impact of environmental contexts on network rewiring, which provides insights into tissue-specific signaling mechanisms. This may also explain why KRAS oncogenic mutants may be causing cancer only in specific tissues despite KRAS being expressed in most cells and tissues.


Asunto(s)
Genes ras , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Células CACO-2 , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Transducción de Señal
4.
iScience ; 26(2): 105931, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711246

RESUMEN

Cellular utilization of available energy flows to drive a multitude of forms of cellular "work" is a major biological constraint. Cells steer metabolism to address changing phenotypic states but little is known as to how bioenergetics couples to the richness of processes in a cell as a whole. Here, we outline a whole-cell energy framework that is informed by proteomic analysis and an energetics-based gene ontology. We separate analysis of metabolic supply and the capacity to generate high-energy phosphates from a representation of demand that is built on the relative abundance of ATPases and GTPases that deliver cellular work. We employed mouse embryonic fibroblast cell lines that express wild-type KRAS or oncogenic mutations and with distinct phenotypes. We observe shifts between energy-requiring processes. Calibrating against Seahorse analysis, we have created a whole-cell energy budget with apparent predictive power, for instance in relation to protein synthesis.

5.
Bioinformatics ; 38(6): 1749-1751, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34954790

RESUMEN

SUMMARY: Homology modelling, the technique of generating models of 3D protein structures based on experimental structures from related proteins, has become increasingly popular over the years. An abundance of different tools for model generation and model evaluation is available from various research groups. We present HOMELETTE, an interface which implements a unified programmatic access to these tools. This allows for the assemble of custom pipelines from pre- or self-implemented building blocks. AVAILABILITY AND IMPLEMENTATION: HOMELETTE is implemented in Python, compatible with version 3.6 and newer. It is distributed under the MIT license. Documentation and tutorials are available at Read the Docs (https://homelette.readthedocs.io/). The latest version of HOMELETTE is available on PyPI (https://pypi.org/project/homelette/) and GitHub (https://github.com/PhilippJunk/homelette). A full installation of the latest version of HOMELETTE with all dependencies is also available as a Docker container (https://hub.docker.com/r/philippjunk/homelette_template). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Documentación , Programas Informáticos
6.
Bioengineering (Basel) ; 10(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36671585

RESUMEN

Melanin, a light and free radical absorbing pigment, is produced in melanocyte cells that are found in skin, but also in hair follicles, eyes, the inner ear, heart, brain and other organs. Melanin synthesis is the result of a complex network of signaling and metabolic reactions. It therefore comes as no surprise that mutations in many of the genes involved are associated with various types of pigmentation diseases and phenotypes ('pigmentation genes'). Here, we used bioinformatics tools to first reconstruct gene-disease/phenotype associations for all pigmentation genes. Next, we reconstructed protein-protein interaction (PPI) networks centered around pigmentation gene products ('pigmentation proteins') and supplemented the PPI networks with protein expression information obtained by mass spectrometry in a panel of melanoma cell lines (both pigment producing and non-pigment producing cells). The analysis provides a systems network representation of all genes/ proteins centered around pigmentation and melanin biosynthesis pathways ('pigmentation network map'). Our work will enable the pigmentation research community to experimentally test new hypothesis arising from the pigmentation network map and to identify new targets for drug discovery.

8.
Methods Mol Biol ; 2315: 59-70, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34302670

RESUMEN

The rational in silico design of interface mutations within protein complexes is a synthetic biology tool that enables-when introduced into biological systems-the artificial rewiring of biological pathways. Here we describe the three-dimensional structure-based design of "rewiring" mutations using the FoldX force field. Specifically, we provide the protocol for the design and selection of interface mutations in three Ras-effector complex structures (PDB entries 3KUD, 4K81, and 6AMB). Ras mutations that impair binding to some but not all interacting partners are selected.


Asunto(s)
Transducción de Señal/genética , Simulación por Computador , Modelos Moleculares , Mutación/genética , Unión Proteica/genética , Ingeniería de Proteínas/métodos , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA