Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36986690

RESUMEN

Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.

2.
Biomedicines ; 9(7)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209598

RESUMEN

This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical-chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the order of 104 SPIONNIRF-Rh/BM-MNC. In the in vivo study, the acute NIRF evaluation showed higher signal intensity in the spinal cord and abdominal region, and the BLI evaluation allowed follow-up (11-120 days), achieving a peak of intensity at 30 days, which remained stable around 108 photons/s until the end. The hematologic evaluation showed similar behavior until 30 days and the histological results confirm that iron is present in almost all tissue evaluated. Our results on BM-MNC homing and tracking in the BMT model did not show a difference in migration or grafting of cells from young or old mice, with the hemogram analysis trending to differentiation towards the myeloid lineage in mice that received cells from old animals. The cell homing by NIRF and long term cell follow-up by BLI highlighted the relevance of the multimodal nanoparticles and combined techniques for evaluation.

3.
Oncotarget ; 7(50): 83570-83587, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27835877

RESUMEN

ST6GalNAc-I, the sialyltransferase responsible for sialyl-Tn (sTn) synthesis, has been previously reported to be positively associated with cancer aggressiveness. Here we describe a novel sTn-dependent mechanism for chemotherapeutic resistance. We show that sTn protects cancer cells against chemotherapeutic-induced cell death by decreasing the interaction of cell surface glycan receptors with galectin-3 and increasing its intracellular accumulation. Moreover, exogenously added galectin-3 potentiated the chemotherapeutics-induced cytotoxicity in sTn non-expressing cells, while sTn overexpressing cells were protected. We also found that the expression of sTn was associated with a reduction in galectin-3-binding sites in human gastric samples tumors. ST6GalNAc-I knockdown restored galectin-3-binding sites on the cell surface and chemotherapeutics sensibility. Our results clearly demonstrate that an interruption of O-glycans extension caused by ST6GalNAc-I enzymatic activity leads to tumor cells resistance to chemotherapeutic drugs, highlighting the need for the development of novel strategies to target galectin-3 and/or ST6GalNAc-I.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Galectina 3/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Animales , Antígenos de Carbohidratos Asociados a Tumores/genética , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Proteínas Sanguíneas , Línea Celular Tumoral , Proliferación Celular , Relación Dosis-Respuesta a Droga , Galectinas , Glicosilación , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Interferencia de ARN , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Factores de Tiempo , Transfección , Carga Tumoral
4.
Exp Toxicol Pathol ; 67(4): 323-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25769681

RESUMEN

This study assessed the effects of the diesel exhaust particles on ERK and JNK MAPKs activation, cell rheology (viscoelasticity), and cytotoxicity in bronchial epithelial airway cells (BEAS-2B). Crude DEP and DEP after extraction with hexane (DEP/HEX) were utilized. The partial reduction of some DEP/HEX organics increased the biodisponibility of many metallic elements. JNK and ERK were activated simultaneously by crude DEP with no alterations in viscoelasticity of the cells. Mitochondrial activity, however, revealed a decrease through the MTT assay. DEP/HEX treatment increased viscoelasticity and cytotoxicity (membrane damage), and also activated JNK. Our data suggest that the greater bioavailability of metals could be involved in JNK activation and, consequently, in the reduction of fiber coherence and increase in the viscoelasticity and cytotoxicity of BEAS cells. The adverse findings detected after exposure to crude DEP and to DEP/HEX reflect the toxic potential of diesel compounds. Considering the fact that the cells of the respiratory epithelium are the first line of defense between the body and the environment, our data contribute to a better understanding of the pathways leading to respiratory cell injury and provide evidence for the onset of or worsening of respiratory diseases caused by inorganic compounds present in DEP.


Asunto(s)
Citoesqueleto/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Material Particulado/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Bronquios/efectos de los fármacos , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Humanos , Compuestos Inorgánicos/toxicidad
5.
J Toxicol Environ Health A ; 78(4): 215-25, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25674825

RESUMEN

Diesel exhaust particles (DEP) contain organic and inorganic elements that produce damage to the respiratory epithelium. The aim of this study was to determine the mucus profile of tracheal explants exposed to either crude diesel exhaust particles (DEP) or DEP treated with nitric acid (DEP/NA), with hexane (DEP/HEX), or with methanol (DEP/MET) at concentrations of 50 and 100 µg/ml for 30 and 60 min. Tracheal explants were subjected to morphometric analyses to study acidic (AB+), neutral (PAS+), and mixed (AB+/PAS+) mucus production and vacuolization (V). Incubation with 50 µg/ml crude DEP resulted in a rise in acid mucus production, an increase in vacuolization at 30 min, and reduction in neutral mucus at 30 and 60 min. Tracheas exposed to DEP/MET at 50 µg/ml for 30 or 60 min resulted in a significant decrease in neutral mucus production and an elevation in acid mucus production. DEP/HEX increased vacuolization at both 50 and 100 µg/ml at 30 and 60 min of exposure. Treatment with 50 µg/ml for 30 or 60 min significantly elevated mixed mucus levels. These results suggest that DEP appear to be more toxic when administered in combination with HEX or MET. DEP/MET modified the mucus profile of the epithelium, while DEP/HEX altered mucus extrusion, and these responses might be due to bioavailability of individual elements in DEP fractions.


Asunto(s)
Mucinas/metabolismo , Tráquea/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Contaminantes Atmosféricos/toxicidad , Animales , Hexanos/química , Técnicas In Vitro , Metanol/química , Ratones , Ratones Endogámicos BALB C , Moco/metabolismo , Ácido Nítrico/química , Tráquea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA