Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(6): 1161-1167.e3, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325374

RESUMEN

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Asunto(s)
Tracheophyta , Temperatura , Ecosistema , Cambio Climático , Xilema , Estaciones del Año , Árboles
2.
Front Microbiol ; 14: 1287167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38125579

RESUMEN

Due to seasonally appearing viruses and several outbreaks and present pandemic, we are surrounded by viruses in our everyday life. In order to reduce viral transmission, functionalized surfaces that inactivate viruses are in large demand. Here the endeavor was to functionalize cellulose-based materials with tannic acid (TA) and tannin-rich extracts by using different binding polymers to prevent viral infectivity of both non-enveloped coxsackievirus B3 (CVB3) and enveloped human coronavirus OC43 (HCoV-OC43). Direct antiviral efficacy of TA and spruce bark extract in solution was measured: EC50 for CVB3 was 0.12 and 8.41 µg/ml and for HCoV-OC43, 78.16 and 95.49 µg/ml, respectively. TA also led to an excellent 5.8- to 7-log reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infectivity. TA functionalized materials reduced infectivity already after 5-min treatment at room temperature. All the tested methods to bind TA showed efficacy on paperboard with 0.1 to 1% (w/v) TA concentrations against CVB3 whereas material hydrophobicity decreased activities. Specific signatures for TA and HCoV-OC43 were discovered by Raman spectroscopy and showed clear co-localization on the material. qPCR study suggested efficient binding of CVB3 to the TA functionalized cellulose whereas HCoV-OC43 was flushed out from the surfaces more readily. In conclusion, the produced TA-materials showed efficient and broadly acting antiviral efficacy. Additionally, the co-localization of TA and HCoV-OC43 and strong binding of CVB3 to the functionalized cellulose demonstrates an interaction with the surfaces. The produced antiviral surfaces thus show promise for future use to increase biosafety and biosecurity by reducing pathogen persistence.

3.
Front Microbiol ; 14: 1249794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029113

RESUMEN

Introduction: Recurring viral outbreaks have a significant negative impact on society. This creates a need to develop novel strategies to complement the existing antiviral approaches. There is a need for safe and sustainable antiviral solutions derived from nature. Objective: This study aimed to investigate the antiviral potential of willow (Salix spp.) bark hot water extracts against coronaviruses and enteroviruses. Willow bark has long been recognized for its medicinal properties and has been used in traditional medicines. However, its potential as a broad-spectrum antiviral agent remains relatively unexplored. Methods: Cytopathic effect inhibition assay and virucidal and qPCR-based assays were used to evaluate the antiviral potential of the bark extracts. The mechanism of action was investigated using time-of-addition assay, confocal microscopy, TEM, thermal, and binding assays. Extracts were fractionated and screened for their chemical composition using high-resolution LC-MS. Results: The native Salix samples demonstrated their excellent antiviral potential against the non-enveloped enteroviruses even at room temperature and after 45 s. They were equally effective against the seasonal and pandemic coronaviruses. Confocal microscopy verified the loss of infection capacity by negligible staining of the newly synthesized capsid or spike proteins. Time-of-addition studies demonstrated that Salix bark extract had a direct effect on the virus particles but not through cellular targets. Negative stain TEM and thermal assay showed that antiviral action on enteroviruses was based on the added stability of the virions. In contrast, Salix bark extract caused visible changes in the coronavirus structure, which was demonstrated by the negative stain TEM. However, the binding to the cells was not affected, as verified by the qPCR study. Furthermore, coronavirus accumulated in the cellular endosomes and did not proceed after this stage, based on the confocal studies. None of the tested commercial reference samples, such as salicin, salicylic acid, picein, and triandrin, had any antiviral activity. Fractionation of the extract and subsequent MS analysis revealed that most of the separated fractions were very effective against enteroviruses and contained several different chemical groups such as hydroxycinnamic acid derivatives, flavonoids, and procyanidins. Conclusion: Salix spp. bark extracts contain several virucidal agents that are likely to act synergistically and directly on the viruses.

4.
Front Bioeng Biotechnol ; 11: 1171908, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152647

RESUMEN

This study demonstrated the antibacterial and antiviral potential of condensed tannins and tannic acid when incorporated into fiber networks tested for functional material purposes. Condensed tannins were extracted from industrial bark of Norway spruce by using pressurized hot water extraction (PHWE), followed by purification of extracts by using XADHP7 treatment to obtain sugar-free extract. The chemical composition of the extracts was analyzed by using HPLC, GC‒MS and UHPLC after thiolytic degradation. The test matrices, i.e., lignocellulosic handsheets, were produced and impregnated with tannin-rich extracts, and tannic acid was used as a commercial reference. The antibacterial and antiviral efficacy of the handsheets were analyzed by using bioluminescent bacterial strains (Staphylococcus aureus RN4220+pAT19 and Escherichia coli K12+pCGLS11) and Enterovirus coxsackievirus B3. Potential bonding of the tannin-rich extract and tannic acid within the fiber matrices was studied by using FTIR-ATR spectroscopy. The deposition characteristics (distribution and accumulation patterns) of tannin compounds and extracts within fiber networks were measured and visualized by direct chemical mapping using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and digital microscopy. Our results demonstrated for the first time, how tannin-rich extracts obtained from spruce bark side streams with green chemistry possess antiviral and antibacterial properties when immobilized into fiber matrices to create substitutes for plastic hygienic products, personal protection materials such as surgical face masks, or food packaging materials to prolong the shelf life of foodstuffs and prevent the spread of infections. However, more research is needed to further develop this proof-of-concept to ensure stable chemical bonding in product prototypes with specific chemistry.

5.
Front Microbiol ; 14: 1108961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846771

RESUMEN

Demand for low- or non-alcoholic beers has been growing in recent years. Thus, research is increasingly focusing on non-Saccharomyces species that typically are only able to consume the simple sugars in wort, and therefore have a limited production of alcohol. In this project, new species and strains of non-conventional yeasts were sampled and identified from Finnish forest environments. From this wild yeast collection, a number of Mrakia gelida strains were selected for small-scale fermentation tests and compared with a reference strain, the low-alcohol brewing yeast Saccharomycodes ludwigii. All the M. gelida strains were able to produce beer with an average of 0.7% alcohol, similar to the control strain. One M. gelida strain showing the most promising combination of good fermentation profile and production of desirable flavor active compounds was selected for pilot-scale (40 L) fermentation. The beers produced were matured, filtered, carbonated, and bottled. The bottled beers were then directed for in-house evaluation, and further analyzed for sensory profiles. The beers produced contained 0.6% Alcohol by volume (ABV). According to the sensory analysis, the beers were comparable to those produced by S. ludwigii, and contained detectable fruit notes (banana and plum). No distinct off-flavors were noted. A comprehensive analysis of M. gelida's resistance to temperature extremes, disinfectant, common preservatives, and antifungal agents would suggest that the strains pose little risk to either process hygiene or occupational safety.

6.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36725205

RESUMEN

A decline in the carbon content of agricultural soils has been reported globally. Amendments of forest industry side-streams might counteract this. We tested the effects of industrial conifer bark and its cascade process materials on the soil microbiome under barley (Hordeum vulgare L.) in clay and silt soil microcosms for 10 months, simulating the seasonal temperature changes of the boreal region. Microbial gene copy numbers were higher in clay soils than in silt. All amendments except unextracted bark increased bacterial gene copies in both soils. In turn, all other amendments, but not unextracted bark from an anaerobic digestion process, increased fungal gene copy numbers in silt soil. In clay soil, fungal increase occurred only with unextracted bark and hot water extracted bark. Soil, amendment type and simulated season affected both the bacterial and fungal community composition. Amendments increased bacteria originating from the anaerobic digestion process, as well as dinitrogen fixers and decomposers of plant cells. In turn, unextracted and hot water extracted bark determined the fungal community composition in silt. As fungal abundance increase and community diversification are related to soil carbon acquisition, bark-based amendments to soils can thus contribute to sustainable agriculture.


Asunto(s)
Microbiota , Suelo , Arcilla , Corteza de la Planta , Microbiología del Suelo , Bacterias/genética , Carbono , Agua
7.
New Phytol ; 237(5): 1606-1619, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451527

RESUMEN

Intrinsic water-use efficiency (iWUE), a key index for carbon and water balance, has been widely estimated from tree-ring δ13 C at annual resolution, but rarely at high-resolution intraseasonal scale. We estimated high-resolution iWUE from laser-ablation δ13 C analysis of tree-rings (iWUEiso ) and compared it with iWUE derived from gas exchange (iWUEgas ) and eddy covariance (iWUEEC ) data for two Pinus sylvestris forests from 2002 to 2019. By carefully timing iWUEiso via modeled tree-ring growth, iWUEiso aligned well with iWUEgas and iWUEEC at intraseasonal scale. However, year-to-year patterns of iWUEgas , iWUEiso , and iWUEEC were different, possibly due to distinct environmental drivers on iWUE across leaf, tree, and ecosystem scales. We quantified the modification of iWUEiso by postphotosynthetic δ13 C enrichment from leaf sucrose to tree rings and by nonexplicit inclusion of mesophyll and photorespiration terms in photosynthetic discrimination model, which resulted in overestimation of iWUEiso by up to 11% and 14%, respectively. We thus extended the application of tree-ring δ13 C for iWUE estimates to high-resolution intraseasonal scale. The comparison of iWUEgas , iWUEiso , and iWUEEC provides important insights into physiological acclimation of trees across leaf, tree, and ecosystem scales under climate change and improves the upscaling of ecological models.


Asunto(s)
Pinus sylvestris , Ecosistema , Agua , Dióxido de Carbono , Bosques , Isótopos de Carbono/análisis
8.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451586

RESUMEN

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Asunto(s)
Tracheophyta , Teorema de Bayes , Bosques , Frío , Temperatura , Cambio Climático , Estaciones del Año
9.
Tree Physiol ; 42(12): 2404-2418, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-35849053

RESUMEN

Incomplete knowledge of carbon (C) allocation dynamics in trees hinders accurate modeling and future predictions of tree growth. We studied C allocation dynamics in a mature Pinus sylvestris L. dominated forest with a novel analytical approach, allowing the first comparison of: (i) magnitude and δ13C of shoot, stem and soil CO2 fluxes (Ashoot, Rstem and Rsoil), (ii) concentration and δ13C of compound-specific and/or bulk non-structural carbohydrates (NSCs) in phloem and roots and (iii) growth of stem and fine roots. Results showed a significant effect of phloem NSC concentrations on tracheid growth, and both variables significantly impacted Rstem. Also, concentrations of root NSCs, especially starch, had a significant effect on fine root growth, although no effect of root NSC concentrations or root growth was detected on Rsoil. Time series analysis between δ13C of Ashoot and δ13C of Rstem or δ13C of Rsoil revealed strengthened C allocation to stem or roots under high C demands. Furthermore, we detected a significant correlation between δ13C of Rstem and δ13C of phloem sucrose and glucose, but not for starch or water-soluble carbohydrates. Our results indicate the need to include C allocation dynamics into tree growth models. We recommend using compound-specific concentration and δ13C analysis to reveal C allocation processes that may not be detected by the conventional approach that utilizes bulk organic matter.


Asunto(s)
Carbono , Árboles , Suelo , Bosques , Carbohidratos/análisis , Almidón
10.
Front Chem ; 9: 821806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35211460

RESUMEN

The pyroligneous acids (PAs) of woody biomass produced by torrefaction have pesticidal properties. Thus, PAs are potential alternatives to synthetic plant protection chemicals. Although woody biomass is a renewable feedstock, its use must be efficient. The efficiency of biomass utilization can be improved by applying a cascading use principle. This study is novel because we evaluate for the first time the pesticidal potential of PAs derived from the bark of hybrid aspen (Populus tremula L. × Populus tremuloides Michx.) and examine simultaneously how the production of the PAs can be interlinked with the cascade processing of hybrid aspen biomass. Hybrid aspen bark contains valuable extractives that can be separated before the hemicellulose is thermochemically converted into plant protection chemicals. We developed a cascade processing scheme, where these extractives were first extracted from the bark with hot water (HWE) or with hot water and alkaline alcohol (HWE+AAE) prior to their conversion into PAs by torrefaction. The herbicidal performance of PAs was tested using Brassica rapa as the test species, and the fungicidal performance was proven using Fusarium culmorum. The pesticidal activities were compared to those of the PAs of debarked wood and of commercial pesticides. According to the results, extractives can be separated from the bark without overtly diminishing the weed and fungal growth inhibitor performance of the produced PAs. The HWE of the bark before its conversion into PAs appeared to have an enhancing effect on the herbicidal activity. In contrast, HWE+AAE lowered the growth inhibition performance of PAs against both the weeds and fungi. This study shows that hybrid aspen is a viable feedstock for the production of herbicidal and fungicidal active chemicals, and it is possible to utilize biomass according to the cascading use principle.

11.
Front Bioeng Biotechnol ; 9: 797939, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976988

RESUMEN

Earlier studies have shown that the bark of Salix L. species (Salicaceae family) is rich in extractives, such as diverse bioactive phenolic compounds. However, we lack knowledge on the bioactive properties of the bark of willow species and clones adapted to the harsh climate conditions of the cool temperate zone. Therefore, the present study aimed to obtain information on the functional profiles of northern willow clones for the use of value-added bioactive solutions. Of the 16 willow clones studied here, 12 were examples of widely distributed native Finnish willow species, including dark-leaved willow (S. myrsinifolia Salisb.) and tea-leaved willow (S. phylicifolia L.) (3 + 4 clones, respectively) and their natural and artificial hybrids (3 + 2 clones, respectively). The four remaining clones were commercial willow varieties from the Swedish willow breeding program. Hot water extraction of bark under mild conditions was carried out. Bioactivity assays were used to screen antiviral, antibacterial, antifungal, yeasticidal, and antioxidant activities, as well as the total phenolic content of the extracts. Additionally, we introduce a fast and less labor-intensive steam-debarking method for Salix spp. feedstocks. Clonal variation was observed in the antioxidant properties of the bark extracts of the 16 Salix spp. clones. High antiviral activity against a non-enveloped enterovirus, coxsackievirus A9, was found, with no marked differences in efficacy between the native clones. All the clones also showed antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas no antifungal (Aspergillus brasiliensis) or yeasticidal (Candida albicans) efficacy was detected. When grouping the clone extract results into Salix myrsinifolia, Salix phylicifolia, native hybrid, artificial hybrid, and commercial clones, there was a significant difference in the activities between S. phylicifolia clone extracts and commercial clone extracts in the favor of S. phylicifolia in the antibacterial and antioxidant tests. In some antioxidant tests, S. phylicifolia clone extracts were also significantly more active than artificial clone extracts. Additionally, S. myrsinifolia clone extracts showed significantly higher activities in some antioxidant tests than commercial clone extracts and artificial clone extracts. Nevertheless, the bark extracts of native Finnish willow clones showed high bioactivity. The obtained knowledge paves the way towards developing high value-added biochemicals and other functional solutions based on willow biorefinery approaches.

13.
Molecules ; 25(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992745

RESUMEN

This study aims to promote comprehensive utilization of woody biomass by providing a knowledgebase on the utility of aspen bark as a new alternative source for fossil-based chemicals. The research focused on the analysis of clonal variation in: (1) major chemical components, i.e., hemicelluloses, cellulose, and lignin; (2) extraneous materials, i.e., bark extractives, and suberic acid; (3) condensed tannins content and composition; and (4) screening differences in antioxidative properties and total phenolic content of hot water extracts and ethanol-water extracts of hybrid aspen bark. Results of this study, the discovery of clonal variation in utilizable chemicals, pave the way for further research on added-value potential of under-utilized hybrid aspen and its bark. Clonal variation was found in notable part of chemicals with potential for utilization. Based on the results, an appropriate bark raw material can be selected for tailored processing, thus improving the resource efficiency. The results also indicate that by applying cascade processing concepts, bark chemical substances could be more efficiently utilized with more environmentally friendly methods.


Asunto(s)
Corteza de la Planta/química , Populus/química , Cruzamientos Genéticos , Corteza de la Planta/genética , Populus/genética
14.
Molecules ; 25(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932686

RESUMEN

Developing shoots, i.e., sprouts, and older needles of Norway spruce (Picea abies (L.) Karst.) have traditionally been used for medicinal purposes due to the high content of vitamins and antioxidants. Currently, sprouts are available as, for example, superfood and supplements. However, end-product quality and nutritive value may decline in the value-chain from raw material sourcing to processing and storage. We studied (1) impacts of different drying and extraction methods on nutritional composition and antioxidative properties of sprouts and needles, (2) differences between sprouts and needles in nutritional composition and microbiological quality, and (3) production scale quality of the sprouts. Additionally, (4) sprout powder was applied in products (ice-cream and sorbet) and consumer acceptance was evaluated. According to our results, older needles have higher content of dry matter, energy, and calcium, but lower microbial quality than sprouts. Sprouts showed a higher concentration of vitamin C, magnesium, potassium, and phosphorus than older needles. Freeze-drying was the best drying method preserving the quality of both sprouts and needles, e.g., vitamin C content. The antioxidative activity of the sprout extracts were lower than that of needles. Ethanol-water extraction resulted in a higher content of active compounds in the extract than water extraction. Sensory evaluation of food products revealed that on average, 76% of consumers considered sprout-containing products very good or good, and a creamy product was preferred over a water-based sorbet.


Asunto(s)
Análisis de los Alimentos/métodos , Industria de Alimentos/métodos , Picea/química , Brotes de la Planta/química , Antioxidantes/farmacología , Ácido Ascórbico/química , Finlandia , Manipulación de Alimentos/métodos , Magnesio/química , Noruega , Fósforo/química , Picea/microbiología , Hojas de la Planta/química , Potasio/química , Polvos , Vitaminas
15.
Molecules ; 25(18)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942658

RESUMEN

Softwood bark is an important by-product of forest industry. Currently, bark is under-utilized and mainly directed for energy production, although it can be extracted with hot water to obtain compounds for value-added use. In Norway spruce (Picea abies [L.] Karst.) bark, condensed tannins and stilbene glycosides are among the compounds that comprise majority of the antioxidative extractives. For developing feasible production chain for softwood bark extractives, knowledge on raw material quality is critical. This study examined the fate of spruce bark tannins and stilbenes during storage treatment with two seasonal replications (i.e., during winter and summer). In the experiment, mature logs were harvested and stored outside. During six-month-storage periods, samples were periodically collected for chemical analysis from both inner and outer bark layers. Additionally, bark extractives were analyzed for antioxidative activities by FRAP, ORAC, and H2O2 scavenging assays. According to the results, stilbenes rapidly degraded during storage, whereas tannins were more stable: only 5-7% of the original stilbene amount and ca. 30-50% of the original amount of condensed tannins were found after 24-week-storage. Summer conditions led to the faster modification of bark chemistry than winter conditions. Changes in antioxidative activity were less pronounced than those of analyzed chemical compounds, indicating that the derivatives of the compounds contribute to the antioxidative activity. The results of the assays showed that, on average, ca. 27% of the original antioxidative capacity remained 24 weeks after the onset of the storage treatment, while a large variation (2-95% of the original capacity remaining) was found between assays, seasons, and bark layers. Inner bark preserved its activities longer than outer bark, and intact bark attached to timber is expected to maintain its activities longer than a debarked one. Thus, to ensure prolonged quality, no debarking before storage is suggested: outer bark protects the inner bark, and debarking enhances the degradation.


Asunto(s)
Antioxidantes/química , Picea/química , Antioxidantes/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Picea/metabolismo , Corteza de la Planta/química , Corteza de la Planta/metabolismo , Extractos Vegetales/química , Proantocianidinas/química , Estaciones del Año , Estilbenos/química , Factores de Tiempo
16.
Front Plant Sci ; 11: 1090, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765568

RESUMEN

Increased abiotic stress along with increasing temperatures, dry periods and forest disturbances may favor biotic stressors such as simultaneous invasion of bark beetle and ophiostomatoid fungi. It is not fully understood how tree desiccation is associated with colonization of sapwood by fungi. A decrease in xylem sap surface tension (σxylem) as a result of infection has been hypothesized to cause xylem embolism by lowering the threshold for air-seeding at the pits between conduits and disruptions in tree water transport. However, this hypothesis has not yet been tested. We investigated tree water relations by measuring the stem xylem hydraulic conductivity (Kstem), σxylem, stem relative water content (RWCstem), and water potential (Ψstem), and canopy conductance (gcanopy), as well as the compound composition in xylem sap in Norway spruce (Picea abies) saplings. We conducted our measurements at the later stage of Endoconidiophora polonica infection when visible symptoms had occurred in xylem. Saplings of two clones (44 trees altogether) were allocated to treatments of inoculated, wounded control and intact control trees in a greenhouse. The saplings were destructively sampled every second week during summer 2016. σxylem, Kstem and RWCstem decreased following the inoculation, which may indicate that decreased σxylem resulted in increased embolism. gcanopy did not differ between treatments indicating that stomata responded to Ψstem rather than to embolism formation. Concentrations of quinic acid, myo-inositol, sucrose and alkylphenol increased in the xylem sap of inoculated trees. Myo-inositol concentrations also correlated negatively with σxylem and Kstem. Our study is a preliminary investigation of the role of σxylem in E. polonica infected trees based on previous hypotheses. The results suggest that E. polonica infection can lead to a simultaneous decrease in xylem sap surface tension and a decline in tree hydraulic conductivity, thus hampering tree water transport.

17.
Proc Natl Acad Sci U S A ; 117(34): 20645-20652, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759218

RESUMEN

Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.


Asunto(s)
Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos , Fotoperiodo , Estaciones del Año , Temperatura , Tracheophyta/genética , Árboles/crecimiento & desarrollo
18.
Molecules ; 25(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604938

RESUMEN

To understand the positional and temporal defense mechanisms of coniferous tree bark at the tissue and cellular levels, the phloem topochemistry and structural properties were examined after artificially induced bark defense reactions. Wounding and fungal inoculation with Endoconidiophora polonica of spruce bark were carried out, and phloem tissues were frequently collected to follow the temporal and spatial progress of chemical and structural responses. The changes in (+)-catechin, (-)-epicatechin, stilbene glucoside, and resin acid distribution, and accumulation patterns within the phloem, were mapped using time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS), alongside detailed structural (LM, TEM, SEM) and quantitative chemical microanalyses of the tissues. Our results show that axial phloem parenchyma cells of Norway spruce contain (+)-catechins, the amount of which locally increases in response to fungal inoculation. The preformed, constitutive distribution and accumulation patterns of (+)-catechins closely follow those of stilbene glucosides. Phloem phenolics are not translocated but form a layered defense barrier with oleoresin compounds in response to pathogen attack. Our results suggest that axial phloem parenchyma cells are the primary location for (+)-catechin storage and synthesis in Norway spruce phloem. Chemical mapping of bark defensive metabolites by cryo-ToF-SIMS, in addition to structural and chemical microanalyses of the defense reactions, can provide novel information on the local amplitudes and localizations of chemical and structural defense mechanisms and pathogen-host interactions of trees.


Asunto(s)
Ascomicetos/patogenicidad , Catequina/análisis , Picea/microbiología , Cromatografía de Gases y Espectrometría de Masas , Glucósidos/análisis , Microscopía Electrónica de Transmisión , Floema/química , Picea/química , Corteza de la Planta/química , Enfermedades de las Plantas/microbiología , Extractos Vegetales/metabolismo , Espectrometría de Masa de Ion Secundario , Estilbenos/análisis , Distribución Tisular
19.
Molecules ; 25(3)2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32012956

RESUMEN

Bark of Norway spruce and Scots pine trees contain large amounts of condensed tannins. Tannins extracted with hot water could be used in different applications as they possess antioxidative and antimicrobial activities. The use of bark tannins as e.g., food preservatives calls for increases in our knowledge of their antioxidative activities when applied in foodstuffs. To assess the ability of bark tannins to prevent lipid oxidation, hot water extracts were evaluated in a liposome model. Isolated tannins were also applied in dry-cured, salty meat snacks either as liquid extracts or in dry-powder form. Consumer acceptance of the snacks was tested by a sensory evaluation panel where outlook, odor, taste, and structure of the snacks were evaluated and compared to a commercial product without tannin ingredients. Our results show that conifer bark tannin-rich extracts have high capacity to prevent lipid oxidation in the liposome model. The efficacies of pine and spruce bark extracts were ten to hundred folds higher, respectively, than those of phenolic berry extracts. The bark extracts did not significantly influence the odor or taste of the meat snacks. The findings indicate that bark extracts may be used as sustainable food ingredients. However, more research is needed to verify their safety.


Asunto(s)
Odorantes , Corteza de la Planta/química , Taninos/química , Tracheophyta/química , Antioxidantes/química , Antioxidantes/farmacología , Aditivos Alimentarios/química , Metabolismo de los Lípidos/efectos de los fármacos , Estructura Molecular , Odorantes/análisis , Oxidación-Reducción/efectos de los fármacos , Fitoquímicos , Extractos Vegetales/química , Extractos Vegetales/farmacología
20.
Polymers (Basel) ; 12(2)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979028

RESUMEN

Injection molded biocomposite specimens were prepared by using four different weight percentages, i.e., 10%, 20%, 30%, and 40% of aspen (Populus tremula L.) and willow (Salix caprea L.) wood particles in a biopolymeric matrix. Dog-bone test specimens were used for testing the physical, mechanical, and thermal properties, and microstructure of biocomposites. The tensile and bending strength changed with the change in weight percentages of wood particles and the bending stiffness increased with the increasing weight percentage of wood. In Brinell hardness, similar changes as a function of wood particle weight percentage were shown, and a relationship between hardness and tensile strength with wood content was also investigated. The prepared biocomposites could be an alternative for plastic-based materials and encourage the use of fast growing (aspen and willow) wood from short-rotation forests in biocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA