Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Brain Behav Evol ; 98(6): 302-313, 2023.
Article En | MEDLINE | ID: mdl-38071961

INTRODUCTION: The present study demonstrates that in the same brain area the astroglia can express GFAP (the main cytoskeletal protein of astroglia) in some species but not in the others of the same vertebrate class. It contrasts the former opinions that the distribution of GFAP found in a species is characteristic of the entire class. The present study investigated birds in different phylogenetic positions: duck (Cairina moschata domestica), chicken (Gallus gallus domesticus), and quails (Coturnix japonica and Excalfactoria chinensis) of Galloanserae; pigeon (Columba livia domestica) of a group of Neoaves, in comparison with representatives of other Neoaves lineages, which emerged more recently in evolution: finches (Taeniopygia guttata and Erythrura gouldiae), magpie (Pica pica), and parrots (Melopsittacus undulatus and Nymphicus hollandicus). METHODS: Following a perfusion with 4% buffered paraformaldehyde, immunoperoxidase reactions were performed with two types of anti-GFAP: monoclonal and polyclonal, on floating sections. RESULTS: The entopallium (formerly "ectostriatum," a telencephalic area in birds) was GFAP-immunopositive in pigeon and in the representatives of Galloanserae but not in songbirds and parrots, which emerged more recently in evolution. The lack of GFAP expression of a brain area, however, does not mean the lack of astroglia. Lesions induced GFAP expression in the territory of GFAP-immunonegative entopallia. It proved that the GFAP immunonegativity is not due to the lack of capability, but rather the suppression of GFAP production of the astrocytes in this territory. In the other areas investigated besides the entopallium (optic tectum and cerebellum), no considerable interspecific differences of GFAP immunopositivity were found. It proved that the immunonegativity of entopallium is due to neither the general lack of GFAP expression nor the incapability of our reagents to detect GFAP in these species. CONCLUSION: The data are congruent with our proposal that a lack of GFAP expression has evolved in different brain areas in vertebrate evolution, typically in lineages that emerged more recently. Comparative studies on GFAP-immunopositive and GFAP-immunonegative entopallia may promote understanding the role of GFAP in neural networks.


Columbidae , Songbirds , Animals , Coturnix , Phylogeny , Pica , Chickens
2.
J Comp Neurol ; 531(8): 866-887, 2023 06.
Article En | MEDLINE | ID: mdl-36994627

The study demonstrates the astroglial and gliovascular structures of the area postrema (AP) in three planes, and compares them to our former findings on the subfornical organ (SFO) and the organon vasculosum laminae terminalis (OVLT). The results revealed long glial processes interconnecting the AP with deeper areas of brain stem. The laminin and ß-dystroglycan immunolabeling altered along the vessels indicating alterations of the gliovascular relations. These and the distributions of glial markers displayed similarities to the SFO and OVLT. In every organ, there was a central area with vimentin- and nestin-immunopositive glia, whereas GFAP and the water-channel aquaporin 4 were found at the periphery. This separation supports different functions of the two regions. The presence of nestin may indicate stem cell capabilities, whereas aquaporin 4 has been suggested by other studies to be a possible participant of osmoperception. Numerous S100-immunopositive glial cells were found approximately evenly distributed in both parts of the AP. Frequency of glutamine synthetase-immunoreactive cells was similar in the surrounding brain tissue in contrast to that found in the OVLT and SFO. Our findings on the three sensory circumventricular organs (AP, OVLT, and SFO) are compared in parallel.


Area Postrema , Subfornical Organ , Rats , Humans , Animals , Area Postrema/metabolism , Nestin/metabolism , Ependymoglial Cells/metabolism , Aquaporin 4 , Astrocytes/metabolism , Subfornical Organ/blood supply , Subfornical Organ/metabolism
3.
Front Neuroanat ; 15: 698459, 2021.
Article En | MEDLINE | ID: mdl-34267629

The present paper is the first comparative study on the astroglia of several actinopterygian species at different phylogenetical positions, teleosts (16 species), and non-teleosts (3 species), based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein), the characteristic cytoskeletal intermediary filament protein, and immunohistochemical marker of astroglia. The question was, how the astroglial architecture reflexes the high diversity of this largest vertebrate group. The actinopterygian telencephalon has a so-called 'eversive' development in contrast to the 'evagination' found in sarcopterygii (including tetrapods). Several brain parts either have no equivalents in tetrapod vertebrates (e.g., torus longitudinalis, lobus inferior, lobus nervi vagi), or have rather different shapes (e.g., the cerebellum). GFAP was visualized applying DAKO polyclonal anti-GFAP serum. The study was focused mainly on the telencephalon (eversion), tectum (visual orientation), and cerebellum (motor coordination) where the evolutionary changes were most expected, but the other areas were also investigated. The predominant astroglial elements were tanycytes (long, thin, fiber-like cells). In the teleost telencephala a 'fan-shape' re-arrangement of radial glia reflects the eversion. In bichir, starlet, and gar, in which the eversion is less pronounced, the 'fan-shape' re-arrangement did not form. In the tectum the radial glial processes were immunostained, but in Ostariophysi and Euteleostei it did not extend into their deep segments. In the cerebellum Bergmann-like glia was found in each group, including non-teleosts, except for Cyprinidae. The vagal lobe was uniquely enlarged and layered in Cyprininae, and had a corresponding layered astroglial system, which left almost free of GFAP the zones of sensory and motor neurons. In conclusion, despite the diversity and evolutionary alterations of Actinopterygii brains, the diversity of the astroglial architecture is moderate. In contrast to Chondrichthyes and Amniotes; in Actinopterygii true astrocytes (stellate-shaped extraependymal cells) did not appear during evolution, and the expansion of GFAP-free areas was limited.

4.
Histol Histopathol ; 35(12): 1455-1471, 2020 Dec.
Article En | MEDLINE | ID: mdl-33107974

The present study proves that rapid and demarcating astroglial reactions are confined to birds and mammals. To understand the function of post-lesion astroglial reaction, the phylogenetical aspects are also to be investigated. Considering the regenerative capabilities, reptiles represent an intermediate position between the brain regeneration-permissive fishes and amphibians and the almost non-permissive birds and mammals. Damage is followed by a rapid astroglial reaction in the mammalian and avian brain, which is held as an impediment of regeneration. In other vertebrates the reactions were usually observed following long survival periods together with signs of regeneration, therefore they can be regarded as concomitant phenomena of regeneration. The present study applies short post-lesion periods comparable to those seen in mammals and birds for astroglial reactions. Two species of lizards were used: gecko (leopard gecko, Eublepharis macularius, Blyth, 1854) and agama (bearded dragon, Pogona vitticeps, Ahl, 1926). The gecko brain is rich in GFAP whereas the agama brain is quite poor in this. Crocodilia, the closest extant relatives of birds were represented in this study by Cuvier's dwarf caiman (Paleosuchus palpebrosus, Cuvier, 1807). The post-lesion astroglial reactions of crocodilians have never been investigated. The injuries were stab wounds in the telencephalon. The survival periods lasted 3, 7, 10 or 14 days. Immunoperoxidase reactions were performed applying anti-GFAP, anti-vimentin and anti-nestin reagents. No rapid and demarcating astroglial reaction resembling that of mammalian or avian brains was found. Alterations of the perivascular immunoreactivities of laminin and ß-dystroglycan as indicators of glio-vascular decoupling proved that the lesions were effective on astroglia. The capability of rapid and demarcating astroglial reaction seems to be confined to mammals and birds and to appear by separate, parallel evolution in them.


Astrocytes/pathology , Brain Injuries, Traumatic/pathology , Brain/pathology , Wounds, Stab/pathology , Animals , Astrocytes/metabolism , Biological Evolution , Birds , Brain/metabolism , Brain Injuries, Traumatic/metabolism , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Lizards , Male , Mammals , Nestin/metabolism , Species Specificity , Time Factors , Vimentin/metabolism , Wounds, Stab/metabolism
5.
Front Neuroanat ; 14: 49, 2020.
Article En | MEDLINE | ID: mdl-32922269

Squamata is one of the richest and most diverse extant groups. The present study investigates the glial fibrillary acidic protein (GFAP)-immunopositive elements of five lizard and three snake species; each represents a different family. The study continues our former studies on bird, turtle, and caiman brains. Although several studies have been published on lizards, they usually only investigated one species. Almost no data are available on snakes. The animals were transcardially perfused. Immunoperoxidase reactions were performed with a mouse monoclonal anti-GFAP (Novocastra). The original radial ependymoglia is enmeshed by secondary, non-radial processes almost beyond recognition in several brain areas like in other reptiles. Astrocytes occur but only as complementary elements like in caiman but unlike in turtles, where astrocytes are absent. In most species, extended areas are free of GFAP-a meaningful difference from other reptiles. The predominance of astrocytes and the presence of areas free of GFAP immunopositivity are characteristic of birds and mammals; therefore, they must be apomorphic features of Squamata, which appeared independently from the evolution of avian glia. However, these features show a high diversity; in some lizards, they are even absent. There was no principal difference between the glial structures of snakes and lizards. In conclusion, the glial structure of Squamata seems to be the most apomorphic one among reptiles. The high diversity suggests that its evolution is still intense. The comparison of identical brain areas with different GFAP contents in different species may promote understanding the role of GFAP in neuronal networks. Our findings are in accordance with the supposal based on our previous studies that the GFAP-free areas expand during evolution.

6.
Integr Zool ; 15(1): 16-31, 2020 Jan.
Article En | MEDLINE | ID: mdl-30811839

The aim of the present paper was to check for the presence of cerebrovascular dystroglycan in vertebrates, because dystroglycan, which is localized in the vascular astroglial end-feet, has a pivotal function in glio-vascular connections. In mammalian brains, the immunoreactivity of ß-dystroglycan subunit delineates the vessels. The results of the present study demonstrate similar patterns in other vertebrates, except for anurans and the teleost groups Ostariophysi and Euteleostei. In this study, we investigated 1 or 2 representative species of the main groups of Chondrichthyes, teleost and non-teleost ray-finned fishes, urodeles, anurans, and reptiles. We also investigated 5 mammalian and 3 bird species. Animals were obtained from breeders or fishermen. The presence of ß-dystroglycan was investigated immunohistochemically in free-floating sections. Pre-embedding electron microscopical immunohistochemistry on Heterodontus japonicus shark brains demonstrated that in Elasmobranchii, ß-dystroglycan is also localized in the perivascular glial end-feet despite the different construction of their blood-brain barrier. The results indicated that the cerebrovascular ß-dystroglycan immunoreactivity disappeared separately in anurans, and in teleosts, in the latter group before its division to Ostariophysi and Euteleostei. Immunohistochemistry in muscles and western blots from brain homogenates, however, detected the presence of ß-dystroglycan, even in anurans and all teleosts. A possible explanation is that in the glial end-feet, ß-dystroglycan is masked in these animals, or disappeared during adaptation to the freshwater habitat.


Brain/physiology , Dystroglycans/chemistry , Vertebrates/physiology , Animals , Brain Chemistry , Humans , Species Specificity
7.
J Comp Neurol ; 527(17): 2793-2812, 2019 12 01.
Article En | MEDLINE | ID: mdl-31045238

This study demonstrates glial and gliovascular markers of organon vasculosum laminae terminalis (OVLT) in three planes. The distribution of glial markers displayed similarities to the subfornical organ. There was an inner part with vimentin- and nestin-immunopositive glia whereas GFAP and the water-channel aquaporin 4 were found at the periphery. This separation indicates different functions of the two regions. The presence of nestin may indicate stem cell-capabilities whereas aquaporin 4 has been reported to promote the osmoreceptor function. Glutamine synthetase immunoreactivity was sparse like in the area postrema and subfornical organ. The laminin and ß-dystroglycan immunolabelings altered along the vessels such as in the subfornical organ indicating altering gliovascular relations. The different subdivisions of OVLT received glial processes of different origins. The posterior periventricular zone contained short vimentin-immunopositive processes from the ependyma of the adjacent surface of the third ventricle. The lateral periventricular zone received forceps-like process systems from the anterolateral part of the third ventricle. Most interestingly, the "dorsal cap" received a mixed group of long GFAP- and vimentin-immunopositive processes from a distant part of the third ventricle. The processes may have two functions: a guidance for newly produced cells like radial glia in immature brain and/or a connection between distant parts of the third ventricle and OVLT.


Astrocytes/cytology , Circumventricular Organs/cytology , Third Ventricle/cytology , Animals , Astrocytes/metabolism , Circumventricular Organs/metabolism , Cytoskeleton/metabolism , Dystroglycans/metabolism , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Laminin/metabolism , Microscopy, Confocal , Nestin/metabolism , Rats, Wistar , Third Ventricle/metabolism , Vimentin/metabolism
8.
J Histochem Cytochem ; 67(1): 29-39, 2019 01.
Article En | MEDLINE | ID: mdl-30047826

The immediate alterations following lesions cannot be investigated by using fixed tissues. Here, we employed two-photon microscopy to study the alterations to the permeability of blood-brain barrier and to glio-vascular connections in vivo during the first minutes following cortical lesions in mice. Four models were used: (1) cryogenic lesion, (2) photodisruption using laser pulses, (3) photothrombosis, and (4) bilateral carotid ligation. Sulforhodamine101 was used for supravital labeling of astrocytes and dextran-bound fluorescein isothiocyanate for the assessment of extravasation. Transgenic mice, in which the endothelium and astrocytes expressed a yellow fluorescent protein, were also used. Astrocytic labeling in vivo was verified with postmortem immunostaining against glial fibrillary acidic protein (GFAP). Summary of results: (1) the glio-vascular connections were stable in the intact brain with no sign of spontaneous dynamic attachment/detachment of glial end-feet; (2) only direct vascular damage (photodisruption or cryogenic) resulted in prompt extravasation; (3) even direct damage failed to provoke a prompt astroglial response. In conclusion, the results indicate that a detachment of the astrocytic end-feet does not precede the breakdown of blood-brain barrier following lesions. Whereas vasogenic edema develops immediately after the lesions, this is not the case with cytotoxic edemas. Time-lapse recordings and three-dimensional reconstructions are presented as supplemental materials.


Astrocytes/pathology , Blood-Brain Barrier/pathology , Brain/pathology , Capillary Permeability , Animals , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/physiopathology , Brain/blood supply , Brain/diagnostic imaging , Brain/physiopathology , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/analysis , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal/methods , Neuroglia/pathology , Optical Imaging/methods , Staining and Labeling/methods , Time Factors
9.
Int J Dev Neurosci ; 69: 97-105, 2018 Oct.
Article En | MEDLINE | ID: mdl-30009882

The present paper provides novel findings on the temporo-spatial correlation of perivascular laminin immunoreactivity with the early postnatal astrocyte development. The cerebrovascular laminin immunoreactivity gradually disappears during development. The fusion of the glial and vascular basal laminae during development makes the laminin epitopes inaccessible for antibody molecules (Krum et al., 1991, Exp Neurol 111:151). The fusion is supposed to correlate with the maturation of the glio-vascular connections. Glial development was followed by immunostaining for GFAP (glial fibrillary acidic protein), S100 protein, glutamine synthetase as glial markers and for nestin to visualize the immature glial structures. Our investigation focused on the period from postnatal day (P)2 to P16, on the dorso-parietal pallium. In the wall of the telencephalon the laminin immunoreactivity disappeared between P5 and P10; in subcortical structures it persisted to P12 or even to P16. Its disappearance overlapped the period when GFAP-immunopositive astrocytes were taking the place of radial glia. Despite the parallel time courses, however, the spatial patterns of the two processes were just the opposite: disappearance of the laminin immunoreactivity progressed from the middle zone whereas the appearance of GFAP from the pial surface and the corpus callosum. Rather, the regression of the vascular laminin immunoreactivity followed the progression of the immunoreactivities of glutamine synthetase and S100 protein. Therefore, the regression really correlates with a 'maturation' of astrocytes which, however, affects other astrocyte functions rather than cytoskeleton.


Astrocytes/metabolism , Brain Chemistry/physiology , Brain/growth & development , Laminin/biosynthesis , Aging/metabolism , Animals , Brain/cytology , Brain/drug effects , Female , Glutamate-Ammonia Ligase/biosynthesis , Immunohistochemistry , Male , Neuroglia/metabolism , Rats , S100 Proteins/biosynthesis , Telencephalon/cytology , Telencephalon/growth & development , Telencephalon/metabolism
10.
Eur J Histochem ; 62(2): 2908, 2018 May 18.
Article En | MEDLINE | ID: mdl-29943956

Dystroglycan has an important role in binding of perivascular glial end-feet tothe basal lamina. Its ß-subunit is localized in the glial end-feet. The investigation period lasted from E(embryonic day)12 to E20. Laminin and ß-dystroglycan were detected by immunohistochemistry, the glial localization of the latter one was supported  by electron microscopy. The immatureglial structures were visualized by the immunostaining of nestin. The ß-dystroglycan immunoreactivity appeared at E16 following the laminin of basal lamina but preceding the perivascular processes of radial glia (E18) and astrocyte-like cells (E20). It occurred in cell bodies which attached to the vessels directly but not with vascular processes and end-feet. The presence of ß-dystroglycan in such immature cells may promote their differentiation to perivascular astrocytes and influence the formation of the glio-vascular processes.


Blood Vessels/cytology , Brain/embryology , Dystroglycans/metabolism , Embryo, Mammalian/cytology , Immunohistochemistry/methods , Neuroglia/cytology , Animals , Astrocytes/cytology , Astrocytes/metabolism , Biomarkers/metabolism , Blood Vessels/metabolism , Brain/metabolism , Cells, Cultured , Cerebrovascular Circulation , Embryo, Mammalian/metabolism , Female , Neuroglia/metabolism , Rats , Rats, Wistar
11.
Neuropathology ; 38(3): 207-217, 2018 Jun.
Article En | MEDLINE | ID: mdl-29266551

The frequency of cerebrovascular injuries raises the importance of their immunohistological investigation in postmortem materials. Most injuries involve the impairment of the blood-brain barrier. The barrier is maintained by the glio-vascular connections which break up following injuries. Some immunohistochemical alterations may refer to the impairment of the gliovascular connections. Laminin and the components of the dystroglycan complex show characteristic immunohistochemical alterations following various experimental injuries (stab wound, cryogenic lesion, arterial occlusions): immunoreactivity of ß-dystroglycan, α-dystrobrevin and aquaporin 4 disappeared while that of utrophin and laminin appeared along the vessels, whereas α-syntrophin visualized the reactive astrocytes but not the resting ones. The aims of the present study were to investigate whether these post-lesion alterations: (i) are reproducible with immersive fixation, which is used in postmortem histology; (ii) are resistant to a postmortem delay before fixation; and (iii) are to be attributed to a direct effect of the lesion, or are mediated by processes occurring only in the living brain. Three models were investigated: (i) following lesions, some brains were fixed by transcardial perfusion, others by immersion; (ii) following lesions, the animals were decapitated and stored at room temperature for 8 or 16 h before fixation; and (iii) the lesions were performed after decapitation. Cryogenic lesions were performed by applying a dry ice cooled copper rod to the brain surface of ketamine-xylazine anesthetized rats. The immunohistochemical reactions were performed on free-floating sections cut with vibratome. Both immunoperoxidase and immunofluorescence methods were used. The fixation method - perfusive or immersive - did not change the post-lesion phenomena investigated. The postmortem delay did not influence the ß-dystroglycan immunoreactivity, that is its lack delineated the area of the lesion. However, in the case of the other substances, various lengths of postmortem delay rendered the immunohistochemistry uninterpretable. The results suggest ß-dystroglycan immunostaining could be applied in the neuropathology to detect cerebrovascular impairments.


Brain Injuries/pathology , Cerebral Cortex/pathology , Dystroglycans/metabolism , Postmortem Changes , Animals , Brain Injuries/metabolism , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Female , Humans , Immunohistochemistry , Male , Rats, Wistar
12.
J Neuropathol Exp Neurol ; 76(11): 929-941, 2017 Nov 01.
Article En | MEDLINE | ID: mdl-29044412

The blood-brain barrier becomes "leaky" following lesions. Former studies revealed that following lesions the immunoreactivity of cerebrovascular laminin becomes detectable whereas that of ß-dystroglycan disappears. These alterations may be indicators of glio-vascular decoupling that may result in the impairment of the blood-brain-barrier. This study investigates correlation between the post-lesion extravasation and the above-mentioned immunohistochemical alterations. Following cryogenic lesions, the survival periods lasted 5, 10, 30 minutes, 1 or 12 hours, or 1 day. Some brains were fixed immediately post-lesion. Immunofluorescent reactions were performed in floating sections. The extravasation was detected with immunostaining for plasma fibronectin and rat immunoglobulins. When the survival period was 30 minutes or longer, the area of extravasation corresponded to the area of altered laminin and ß-dystroglycan immunoreactivities. Following immediate fixation some laminin immunoreactivity was already detected. The extravasation seemed to precede this early appearance of laminin immunoreactivity. The ß-dystroglycan immunoreactivity disappeared later. When the extravasation spread into the corpus callosum, vascular laminin immunoreactivity appeared but the ß-dystroglycan immunoreactivity persisted. It seems that extravasation separates the glial and vascular basal laminae, which results in the appearance of laminin immunoreactivity. The disappearance of ß-dystroglycan immunoreactivity is neither a condition nor an inevitable consequence of the 2 other phenomena.


Dystroglycans/analysis , Extravasation of Diagnostic and Therapeutic Materials/pathology , Freezing/adverse effects , Laminin/analysis , Parietal Lobe/chemistry , Parietal Lobe/pathology , Animals , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/pathology , Cerebrovascular Circulation/physiology , Female , Male , Rats , Rats, Wistar
13.
J Histochem Cytochem ; 63(5): 367-83, 2015 05.
Article En | MEDLINE | ID: mdl-25673286

The subfornical organ (SFO) is a circumventricular organ with a chemosensitive function, and its vessels have no blood-brain barrier. Our study investigated the glial and vascular components in the SFO to determine whether their distributions indicate subdivisions, how to characterize the vessels and how to demarcate the SFO. To this end, we investigated glial markers (GFAP, glutamine synthetase, S100) and other markers, including vimentin and nestin (immature glia), laminin (basal lamina), ß-dystroglycan (glio-vascular connections), and aquaporin 4 (glial water channels). We determined that the 'shell' of the SFO was marked by immunoreactivity for S100, GFAP and aquaporin 4. Nestin immunoreactivity was characteristic of the 'core'. Vimentin was almost evenly distributed. Glutamine synthetase immunoreactivity occurred in the shell but its expression was sparse. Vessels in the core were decorated with laminin but showed a discontinuous expression of aquaporin 4. Vimentin and GFAP staining was usually in separate glial elements, which may be related to their functional differences. Similar to other vessels in the brain, ß-dystroglycan was detected along the shell vessels but laminin was not. The gradual disappearance of the laminin immunopositivity was attributed to the gradual disappearance of the perivascular space. Thus, our findings suggest that the shell and core glio-vascular structures are adapted to different sensory functions: osmoperception and the perception of circulating peptides, respectively.


Dystroglycans/metabolism , Neuroglia/cytology , Subfornical Organ/blood supply , Subfornical Organ/cytology , Animals , Aquaporin 4/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Glutamate-Ammonia Ligase/metabolism , Laminin/metabolism , Male , Nestin/metabolism , Neuroglia/metabolism , Rats, Wistar , S100 Proteins/metabolism , Subfornical Organ/metabolism , Vimentin/metabolism
14.
Neurosci Lett ; 583: 182-7, 2014 Nov 07.
Article En | MEDLINE | ID: mdl-25281792

Utrophin is an autosomal homologue of dystrophin. Dystrophin is a member of the dystrophin-glycoprotein complex, which is a cell surface receptor for basal lamina components. In recent opinions utrophin occurs in the cerebrovascular endothelium but not in the perivascular glia. Cerebrovascular laminin immunoreactivity can only be detected in the subpial segments of the vessels, in circumventricular organs lacking blood-brain barrier, in immature vessels and following brain lesions. In our former experience utrophin immunoreactivity showed similar phenomena to that of laminin. The present study investigates the parallel occurrence of vascular utrophin and laminin immunoreactivity in the brain tissue, especially in the circumventricular organs, and during the parallel postnatal regression of both utrophin and laminin immunoreactivity. Their cerebrovascular immunoreactivity observed in frozen sections renders plausible the role of hidden but explorable epitopes, instead of a real absence of laminin and utrophin. The laminin epitopes are supposed to be hidden due to the fusion of the glial (i.e. brain parenchymal) and vascular basal laminae (Krum et al., Exp. Neurol. 111 (1991) 151). In all cases including its post-lesion re-appearance published formerly by us, laminin immunoreactivity may be attributed to the separation of glial and vascular basal laminae. Utrophin is localized, however, intracellularly, therefore a more complex molecular mechanism is to be assumed and it remains to be investigated how structural changes of the basal lamina may indirectly affect the immunoreactivity of utrophin. The results indicate that immunoreactivity may be influenced not only by the presence or absence of macromolecules but also by their functional state.


Basement Membrane/metabolism , Brain/metabolism , Utrophin/metabolism , Animals , Basement Membrane/growth & development , Brain/blood supply , Brain/growth & development , Circumventricular Organs/blood supply , Circumventricular Organs/growth & development , Circumventricular Organs/metabolism , Female , Immunohistochemistry , Laminin/metabolism , Male , Rats, Wistar
15.
Exp Brain Res ; 232(7): 2095-104, 2014 Jul.
Article En | MEDLINE | ID: mdl-24668128

In contrast to other astroglial populations, Bergmann glia (BG) form a strictly arranged system where each cell contacts the pia, with an architecture and function resembling that of immature radial glia. As a consequence, a post-lesion glial reaction is expected to differ from that observed in other parts of the brain. The present study describes the characteristic phases of intermediate filament protein formation during the different stages of BG response following injury and compares them with reactive glial patterns of other brain areas and patterns of glial development. The progress of Bergmann glial repair shares similar features with glial development. Following injury, BG developed nestin immunopositivity; then, colocalization of nestin and GFAP was observed. Finally, exclusively GFAP-immunopositive BG were restituted, denser, and thicker than before. The changes of intermediate filament composition appeared at first at the proximal and distal ends of BG fibers, i.e., at the perikaryal "root" and in the pial endfeet. No astrocytic invasion was present in the molecular layer, nor any distinct rearrangement of BG. These results demonstrate the role of the resident glia in glial reactions and refer to the priority of gliomeningeal connections.


Cerebellar Diseases/pathology , Cerebral Cortex/pathology , Intermediate Filaments/pathology , Neuroglia/pathology , Animals , Bromodeoxyuridine/metabolism , Calbindins/metabolism , Cell Count , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Male , Nestin/metabolism , Neuroglia/metabolism , Rats , Rats, Wistar , Time Factors
16.
Neurosci Lett ; 566: 36-41, 2014 Apr 30.
Article En | MEDLINE | ID: mdl-24561092

In the central nervous system the extracellular matrix has important roles, e.g. supporting the extracellular space, controlling the tissue hydration, binding soluble factors and influencing their diffusion. The distribution of the extracellular matrix components in the brain has been mapped but data on the circumventricular organs (CVOs) is not available yet. The CVOs lack the blood-brain barrier and have relatively large perivascular spaces. The present study investigates tenascin-R and the lecticans: aggrecan, brevican, neurocan, and versican in the median eminence, the area postrema, the vascular organ of the lamina terminalis, the subfornical organ, the pineal body and the subcommissural organ of the rat applying immunohistochemical methods, and lectin histochemistry, using Wisteria floribunda agglutinin (WFA). The extracellular matrix components were found intensely expressed in the CVOs with two exceptions: aggrecan immunoreactivity visualized only neurons in the arcuate nucleus, and the subcommissural organ was not labeled with either WFA, or lecticans, or tenascin-R. The different labelings usually overlapped each other. The distribution of the extracellular matrix components marked the territories of the CVOs. Considering these we suppose that the extracellular matrix is essential in the maintenance of CVO functions providing the large extracellular space which is required for diffusion and other processes important in their chemosensitive and neurosecretory activities. The decrease of extracellular matrix beyond the border of the organs may contribute to the control of the diffusion of molecules from the CVOs into the surrounding brain substance.


Area Postrema/metabolism , Extracellular Matrix Proteins/metabolism , Hypothalamus/metabolism , Median Eminence/metabolism , Neurosecretory Systems/metabolism , Aggrecans/metabolism , Animals , Brevican/metabolism , Female , Male , Neurocan/metabolism , Pineal Gland/metabolism , Rats, Wistar , Subcommissural Organ/metabolism , Subfornical Organ/metabolism , Tenascin/metabolism , Versicans/metabolism
18.
Orv Hetil ; 153 Suppl: 3-38, 2012 Dec.
Article Hu | MEDLINE | ID: mdl-23687666
19.
J Histochem Cytochem ; 58(5): 463-79, 2010 May.
Article En | MEDLINE | ID: mdl-20124096

The so-called neurointermediate lobe is composed of the intermediate and neural lobes of the pituitary. The present immunohistochemical study investigated components of the basal lamina (laminin, agrin, and perlecan), the dystrophin-dystroglycan complex (dystrophin, beta-dystroglycan, alpha1-dystrobrevin, beta-dystrobrevin, utrophin, and alpha1-syntrophin), and the aquaporins (aquaporin-4 and -9). Glia markers (GFAP, S100, and glutamine synthetase) and components of connective tissue (collagen type I and fibronectin) were also labeled. In the neurohypophysis, immunostaining of basal lamina delineated meningeal invaginations. In these invaginations, vessels were seen to penetrate the organ without submerging into its parenchyma. On the parenchymal side of the invaginations, beta-dystroglycan was detected, whereas utrophin was detected in the walls of vessels. Immunostaining of alpha1-dystrobrevin and alpha1-syntrophin did not delineate the vessels. The cells of the intermediate lobe were fully immunoreactive to alpha1-dystrobrevin and alpha1-syntrophin, whereas components of the basal lamina delineated the contours of the cells. GFAP-immunoreactive processes surrounded them. Aquaporin-4 localized at the periphery of the neurohypophysis, mainly adjacent to the intermediate lobe but not along the vessels. It colocalized only partially with GFAP and not at all with alpha1-syntrophin. Aquaporin-9 was not detected. These results emphasize the possibility that the components of the dystrophin-dystroglycan complex localize differently and raise the question about the roles of dystrobrevins, alpha1-syntrophin, and aquaporin-4 in the functions of the intermediate and neural lobes, respectively.


Aquaporin 4/metabolism , Basement Membrane/metabolism , Calcium-Binding Proteins/metabolism , Dystroglycans/metabolism , Dystrophin-Associated Proteins/metabolism , Dystrophin/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Pituitary Gland/metabolism , Animals , Axons/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Laminin/metabolism , Male , Pituitary Gland/ultrastructure , Pituitary Gland, Intermediate/metabolism , Pituitary Gland, Intermediate/ultrastructure , Pituitary Gland, Posterior/metabolism , Pituitary Gland, Posterior/ultrastructure , Rats , Utrophin/metabolism
20.
Histol Histopathol ; 25(1): 1-14, 2010 01.
Article En | MEDLINE | ID: mdl-19924636

The pineal gland is an evagination of the brain tissue, a circumventricular neuroendocrine organ. Our immunohistochemical study investigates basal lamina components (laminin, agrin, perlecan, fibronectin), their receptor, the dystrophin-dystroglycan complex (beta-dystroglycan, dystrophin utrophin), aquaporins (-4,-9) and cellular markers (S100, neurofilament, GFAP, glutamine synthetase) in the adult rat corpus pineale. The aim was to compare the immunohistochemical features of the cerebral and pineal vessels and their environment, and to compare their features in the distal and proximal subdivisions of the so-called 'superficial pineal gland'. In contrast to the cerebral vessels, pineal vessels proved to be immunonegative to alpha1-dystrobrevin, but immunoreactive to laminin. An inner, dense, and an outer, loose layer of laminin as two basal laminae were present. The gap between them contained agrin and perlecan. Basal lamina components enmeshed the pinealocytes, too. Components of dystrophin-dystroglycan complex were also distributed along the vessels. Dystrophin, utrophin and agrin gave a 'patchy' distribution rather than a continuous one. The vessels were interconnected by wing-like structures, composed of basal lamina-components: a delicate network forming nests for cells. Cells immunostained with glutamine synthetase, S100-protein or neurofilament protein contacted the vessels, as well as GFAP- or aquaporin-immunostained astrocytes. Within the body a smaller, proximal, GFAP-and aquaporin-containing subdivision, and a larger, distal, GFAP-and aquaporin-free subdivision could be distinguished. The vascular localization of agrin and utrophin, as well as dystrophin, delineated vessels unequally, preferring the proximal or distal end of the body, respectively.


Brain Chemistry/physiology , Cerebrovascular Circulation/physiology , Dystroglycans/metabolism , Dystrophin/metabolism , Pineal Gland/metabolism , Animals , Blood Vessels/cytology , Blood Vessels/metabolism , Female , Fluorescent Antibody Technique , Image Processing, Computer-Assisted , Immunohistochemistry , Male , Microscopy, Confocal , Nerve Growth Factors/metabolism , Pineal Gland/blood supply , Rats , Rats, Wistar , S100 Calcium Binding Protein beta Subunit , S100 Proteins/metabolism , Tissue Fixation
...