Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 43(1): 57-74, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36106799

RESUMEN

Global warming affects the abiotic and biotic growth environment of plants, including the spread of fungal diseases such as Dutch elm disease (DED). Dutch elm disease-resistance of different Ulmus species varies, but how this is reflected in leaf-level physiological pathogen responses has not been investigated. We studied the impacts of mechanical injury alone and mechanical injury plus inoculation with the DED-causing pathogens Ophiostoma novo-ulmi subsp. novo-ulmi and O. novo-ulmi subsp. americana on Ulmus glabra, a more vulnerable species, and U. laevis, a more resistant species. Plant stress responses were evaluated for 12 days after stress application by monitoring leaf net CO2 assimilation rate (A), stomatal conductance (gs), ratio of ambient to intercellular CO2 concentration (Ca/Ci) and intrinsic water-use efficiency (A/gs), and by measuring biogenic volatile (VOC) release by plant leaves. In U. glabra and U. laevis, A was not affected by time, stressors or their interaction. Only in U. glabra, gs and Ca/Ci decreased in time, yet recovered by the end of the experiment. Although the emission compositions were affected in both species, the stress treatments enhanced VOC emission rates only in U. laevis. In this species, mechanical injury especially when combined with the pathogens increased the emission of lipoxygenase pathway volatiles and dimethylallyl diphosphate and geranyl diphosphate pathway volatiles. In conclusion, the more resistant species U. laevis had a more stable photosynthesis, but stronger pathogen-elicited volatile response, especially after inoculation by O. novo-ulmi subsp. novo-ulmi. Thus, stronger activation of defenses might underlay higher DED-resistance in this species.


Asunto(s)
Ophiostoma , Ulmus , Compuestos Orgánicos Volátiles , Ulmus/fisiología , Dióxido de Carbono , Enfermedades de las Plantas/microbiología , Ophiostoma/fisiología , Fotosíntesis
2.
Sci Rep ; 12(1): 14294, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995937

RESUMEN

Biocontrol providing parasitoids can orientate according to volatile organic compounds (VOCs) of their host's plants, the emission of which is potentially dependent on the availability of soil nitrogen (N). This paper aimed at finding the optimal N fertilization rate for oilseed rape (Brassica napus L.) to favor parasitism of pollen beetles (Brassicogethes aeneus Fab. syn. Meligethes aeneus Fab.) in a controlled environment. Pollen beetles preferred to oviposit into buds of plants growing under higher N fertilization, whereas their parasitoids favored moderate N fertilization. As a part of induced defense, the proportion of volatile products of glucosinolate pathway in the total oilseed rape VOC emission blend was increased. Our results suggest that the natural biological control of pollen beetle herbivory is best supported by moderate N fertilization rates.


Asunto(s)
Brassica napus , Escarabajos , Animales , Escarabajos/metabolismo , Fertilización , Nitrógeno/metabolismo , Polen
3.
Molecules ; 26(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34070994

RESUMEN

Ozone (O3) entry into plant leaves depends on atmospheric O3 concentration, exposure time and openness of stomata. O3 negatively impacts photosynthesis rate (A) and might induce the release of reactive volatile organic compounds (VOCs) that can quench O3, and thereby partly ameliorate O3 stress. Water stress reduces stomatal conductance (gs) and O3 uptake and can affect VOC release and O3 quenching by VOC, but the interactive effects of O3 exposure and water stress, as possibly mediated by VOC, are poorly understood. Well-watered (WW) and water-stressed (WS) Brassica nigra plants were exposed to 250 and 550 ppb O3 for 1 h, and O3 uptake rates, photosynthetic characteristics and VOC emissions were measured through 22 h recovery. The highest O3 uptake was observed in WW plants exposed to 550 ppb O3 with the greatest reduction and poorest recovery of gs and A, and elicitation of lipoxygenase (LOX) pathway volatiles 10 min-1.5 h after exposure indicating cellular damage. Ozone uptake was similar in 250 ppb WW and 550 ppb WS plants and, in both treatments, O3-dependent reduction in photosynthetic characteristics was moderate and fully reversible, and VOC emissions were little affected. Water stress alone did not affect the total amount and composition of VOC emissions. The results indicate that drought ameliorated O3 stress by reducing O3 uptake through stomatal closure and the two stresses operated in an antagonistic manner in B. nigra.


Asunto(s)
Planta de la Mostaza/metabolismo , Fotosíntesis/fisiología , Estrés Fisiológico/fisiología , Transporte Biológico/fisiología , Deshidratación/metabolismo , Deshidratación/fisiopatología , Sequías , Oxígeno/química , Oxígeno/metabolismo , Ozono/metabolismo , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Compuestos Orgánicos Volátiles/química
4.
Nature ; 580(7802): 227-231, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269351

RESUMEN

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Biomasa , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Calentamiento Global/prevención & control , Modelos Biológicos , Nueva Gales del Sur , Fotosíntesis , Suelo/química , Árboles/crecimiento & desarrollo
5.
J Exp Bot ; 70(18): 5017-5030, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31289830

RESUMEN

Natural vegetation is predicted to suffer from extreme heat events as a result of global warming. In this study, we focused on the immediate response to heat stress. Photosynthesis and volatile emissions were measured in the leaves of tobacco (Nicotiana tabacum cv. Wisconsin 38) after exposure to heat shock treatments between 46 °C and 55 °C. Exposure to 46 °C decreased photosynthetic carbon assimilation rates (A) by >3-fold. Complete inhibition of A was observed at 49 °C, together with a simultaneous decrease in the maximum quantum efficiency of PSII, measured as the Fv/Fm ratio. A large increase in volatile emissions was observed at 52 °C. Heat stress resulted in only minor effects on the emission of monoterpenes, but volatiles associated with membrane damage such as propanal and (E)-2-hexenal+(Z)-3-hexenol were greatly increased. Heat induced changes in the levels of methanol and 2-ethylfuran that are indicative of modification of cell walls. In addition, the oxidation of metabolites in the volatile profiles was strongly enhanced, suggesting the acceleration of oxidative processes at high temperatures that are beyond the thermal tolerance limit.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Nicotiana/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Calor/efectos adversos , Fotosíntesis , Hojas de la Planta/fisiología
6.
J Exp Bot ; 69(3): 681-697, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29301045

RESUMEN

Ozone is a strong oxidant and a key stress elicitor. The immediate and longer term impacts of ozone are poorly understood in species with emission of both de novo synthesized and stored volatiles, such a tobacco (Nicotiana tabacum), which has terpene-containing glandular trichomes on the leaf surface. In this study, we exposed N. tabacum 'Wisconsin' leaves to acute ozone doses of 0 (control), 400, 600, 800, and 1000 ppb for 30 min and studied the effects of ozone exposure on ozone uptake, gas-exchange characteristics, and emissions of lipoxygenase pathway volatiles, monoterpenes, and sesquiterpenes. Foliage emissions of lipoxygenase pathway volatiles were quantitatively related to the severity of ozone exposure, but the stress dose vs. emission relationship was weaker for terpenoids. Analysis of leaf terpene content and composition indicated that several monoterpenes and sesquiterpenes were not stored in leaves and were synthesized de novo upon ozone exposure. The highest degree of elicitation for each compound was observed immediately after ozone treatment and it declined considerably during recovery. Leaf ozone uptake was dominated by non-stomatal deposition, and the emissions of total lipoxygenase pathway volatiles and mono- and sesquiterpenes were positively correlated with non-stomatal ozone deposition. Overall, this study demonstrates remarkably high ozone resistance of the studied tobacco cultivar and indicates that ozone's effects on volatile emissions primarily reflect modifications in the release of stored volatiles and reaction of ozone with the leaf surface structure.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Homeostasis , Nicotiana/efectos de los fármacos , Ozono/efectos adversos , Potasio/fisiología , Compuestos Orgánicos Volátiles/metabolismo , Relación Dosis-Respuesta a Droga , Oxígeno/análisis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Transducción de Señal , Estrés Fisiológico , Nicotiana/metabolismo
7.
Phytochemistry ; 147: 80-88, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29304384

RESUMEN

Diterpenoids constitute an important part of oleoresin in conifer needles, but the environmental and genetic controls on diterpenoid composition are poorly known. We studied the presence of diterpenoids in four pine populations spanning an extensive range of nitrogen (N) availability. In most samples, isoabienol was the main diterpenoid. Additionally, low contents of (Z)-biformene, abietadiene isomers, manoyl oxide isomers, labda-7,13,14-triene and labda-7,14-dien-13-ol were quantified in pine needles. According to the occurrence and content of diterpenoids it was possible to distinguish 'non diterpenoid pines', 'high isoabienol pines', 'manoyl oxide - isoabienol pines' and 'other diterpenoid pines'. 'Non diterpenoid pines', 'high isoabienol pines' and 'other diterpenoid pines' were characteristic to the dry forest, yet the majority of pines (>80%) of the bog Laeva represented 'high isoabienol pines'. 'Manoyl oxide - isoabienol pines' were present only in the wet sites. Additionally, orthogonal partial least-squares analysis showed, that in the bogs foliar nitrogen content per dry mass (NM) correlated to diterpenoids. Significant correlations existed between abietadienes, isoabienol and foliar NM in 'manoyl oxide - isoabienol pines', and chemotypic variation was also associated by population genetic distance estimated by nuclear microsatellite markers. Previously, the presence of low and high Δ-3-carene pines has been demonstrated, but the results of the current study indicate that also diterpenoids form an independent axis of chemotypic differentiation. Further studies are needed to understand whether the enhanced abundance of diterpenoids in wetter sites reflects a phenotypic or genotypic response.


Asunto(s)
Diterpenos/análisis , Naftoles/química , Pinus/química , Diterpenos/química , Conformación Molecular , Fenotipo
8.
Environ Exp Bot ; 133: 87-97, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-29416188

RESUMEN

Carotenoids constitute a major target of chloroplastic photooxidative reactions, leading to the formation of several oxidized derivatives and cleavage products, some of which are volatile (VCCPs). Among them, ß-cyclocitral (ß-CC), at least, is a retrograde signaling molecule that modulates the activity of many key physiological processes. In the present work, we aimed to study whether ß-CC and other VCCPs are released into the atmosphere from photosynthetic tissues. To overcome stomatal limitations, the foliose chlorolichen Lobaria pulmonaria was used as the model system, and the emissions of biogenic volatiles, induced by heat and wounding stresses, were monitored by proton-transfer reaction time-of-flight mass-spectrometry (PTR-TOF-MS) and gas-chromatography (GC-MS). Prior to stress treatments, VCCPs were emitted constitutively, accounting for 1.3 % of the total volatile release, with ß-CC being the most abundant VCCP. Heat and wounding stresses induced a burst of volatile release, including VCCPs, and a loss of carotenoids. Under heat stress, the production of ß-CC correlated positively with temperature. However the enhancement of production of VCCPs was the lowest among all the groups of volatiles analyzed. Given that the rates of carotenoid loss were three orders of magnitude higher than the release rates of VCCPs and that these compounds only represent a minor fraction in the blend of volatiles, it seems unlikely that VCCPs might represent a global stress signal capable of diffusing through the atmosphere to different neighboring individuals.

9.
Environ Exp Bot ; 138: 184-192, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29367792

RESUMEN

Gypsy moth (Lymantria dispar L., Lymantriinae) is a major pest of pedunculate oak (Quercus robur) forests in Europe, but how its infections scale with foliage physiological characteristics, in particular with photosynthesis rates and emissions of volatile organic compounds has not been studied. Differently from the majority of insect herbivores, large larvae of L. dispar rapidly consume leaf area, and can also bite through tough tissues, including secondary and primary leaf veins. Given the rapid and devastating feeding responses, we hypothesized that infection of Q. robur leaves by L. dispar leads to disproportionate scaling of leaf photosynthesis and constitutive isoprene emissions with damaged leaf area, and to less prominent enhancements of induced volatile release. Leaves with 0% (control) to 50% of leaf area removed by larvae were studied. Across this range of infection severity, all physiological characteristics were quantitatively correlated with the degree of damage, but all these traits changed disproportionately with the degree of damage. The net assimilation rate was reduced by almost 10-fold and constitutive isoprene emissions by more than 7-fold, whereas the emissions of green leaf volatiles, monoterpenes, methyl salicylate and the homoterpene (3E)-4,8-dimethy-1,3,7-nonatriene scaled negatively and almost linearly with net assimilation rate through damage treatments. This study demonstrates that feeding by large insect herbivores disproportionately alters photosynthetic rate and constitutive isoprene emissions. Furthermore, the leaves have a surprisingly large capacity for enhancement of induced emissions even when foliage photosynthetic function is severely impaired.

10.
Environ Sci Technol ; 50(21): 11501-11510, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27704791

RESUMEN

In addition to climate warming, greater herbivore pressure is anticipated to enhance the emissions of climate-relevant biogenic volatile organic compounds (VOCs) from boreal and subarctic forests and promote the formation of secondary aerosols (SOA) in the atmosphere. We evaluated the effects of Epirrita autumnata, an outbreaking geometrid moth, feeding and larval density on herbivore-induced VOC emissions from mountain birch in laboratory experiments and assessed the impact of these emissions on SOA formation via ozonolysis in chamber experiments. The results show that herbivore-induced VOC emissions were strongly dependent on larval density. Compared to controls without larval feeding, clear new particle formation by nucleation in the reaction chamber was observed, and the SOA mass loadings in the insect-infested samples were significantly higher (up to 150-fold). To our knowledge, this study provides the first controlled documentation of SOA formation from direct VOC emission of deciduous trees damaged by known defoliating herbivores and suggests that chewing damage on mountain birch foliage could significantly increase reactive VOC emissions that can importantly contribute to SOA formation in subarctic forests. Additional feeding experiments on related silver birch confirmed the SOA results. Thus, herbivory-driven volatiles are likely to play a major role in future biosphere-vegetation feedbacks such as sun-screening under daily 24 h sunshine in the subarctic.


Asunto(s)
Herbivoria , Mariposas Nocturnas , Aerosoles , Animales , Betula , Compuestos Orgánicos Volátiles
11.
Plant Cell Environ ; 39(9): 2027-42, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27287526

RESUMEN

Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress-dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25-44 °C (long-term stress) or shock-heating leaves to 45-50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long-term stress and collapse of photosynthetic activity after heat shock stress were associated with non-stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long-term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long-term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat-stressed B. nigra plants, especially upon chronic stress that leads to induction responses.


Asunto(s)
Respuesta al Choque Térmico , Planta de la Mostaza/metabolismo , Fotosíntesis , Compuestos Orgánicos Volátiles/metabolismo
12.
Environ Exp Bot ; 132: 1-15, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-29367791

RESUMEN

Plants frequently experience heat ramps of various severities, but how and to what degree plant metabolic activity recovers from mild and severe heat stress is poorly understood. In this study, we exposed the constitutive terpene emitter, Solanum. lycopersicum leaves to mild (37 and 41 °C), moderate (46 °C) and severe (49 °C) heat ramps of 5 min. and monitored foliage photosynthetic activity, lipoxygenase pathway volatile (LOX), and mono- and sesquiterpene emissions and expression of two terpene synthase genes, ß-phellandrene synthase and (E)-ß-caryophyllene/α-humulene synthase, through a 24 h recovery period upon return to pre-stress conditions. Leaf monoterpene emissions were dominated by ß-phellandrene and sesquiterpene emissions by (E)-ß-caryophyllene, and thus, these two terpene synthase genes were representative for the two volatile terpene classes. Photosynthetic characteristics partly recovered under moderate heat stress, and very limited recovery was observed under severe stress. All stress treatments resulted in elicitation of LOX emissions that declined during recovery. Enhanced mono- and sesquiterpene emissions were observed immediately after the heat treatment, but the emissions decreased even to below the control treatment during recovery between 2-10 h, and raised again by 24 h. The expression of ß-phellandrene and (E)-ß-caryophyllene synthase genes decreased between 2-10 h after heat stress, and recovered to pre-stress level in mild heat stress treatment by 24 h. Overall, this study demonstrates a highly sensitive heat response of terpenoid synthesis that is mainly controlled by gene level responses under mild stress, while severe stress leads to non-recoverable declines in foliage physiological and gene expression activities.

13.
Plant Physiol ; 168(2): 532-48, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25926480

RESUMEN

Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Difosfonatos/farmacología , Elasticidad , Hemiterpenos/biosíntesis , Hibridación Genética , Plastidios/metabolismo , Populus/metabolismo , Alendronato/farmacología , Vías Biosintéticas/efectos de la radiación , Butadienos , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Cinética , Luz , Análisis de Flujos Metabólicos , Pentanos , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plastidios/efectos de los fármacos , Plastidios/efectos de la radiación , Populus/efectos de los fármacos , Populus/efectos de la radiación , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/efectos de la radiación , Factores de Tiempo
14.
Front Plant Sci ; 6: 111, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25784918

RESUMEN

Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5) residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS) that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS). The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3), functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP), while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP) and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP). Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes.

15.
PLoS One ; 9(5): e96086, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24811199

RESUMEN

Water is the key resource limiting world agricultural production. Although an impressive number of research reports have been published on plant drought tolerance enhancement via genetic modifications during the last few years, progress has been slower than expected. We suggest a feasible alternative strategy by application of rhizospheric bacteria coevolved with plant roots in harsh environments over millions of years, and harboring adaptive traits improving plant fitness under biotic and abiotic stresses. We show the effect of bacterial priming on wheat drought stress tolerance enhancement, resulting in up to 78% greater plant biomass and five-fold higher survivorship under severe drought. We monitored emissions of seven stress-related volatiles from bacterially-primed drought-stressed wheat seedlings, and demonstrated that three of these volatiles are likely promising candidates for a rapid non-invasive technique to assess crop drought stress and its mitigation in early phases of stress development. We conclude that gauging stress by elicited volatiles provides an effectual platform for rapid screening of potent bacterial strains and that priming with isolates of rhizospheric bacteria from harsh environments is a promising, novel way to improve plant water use efficiency. These new advancements importantly contribute towards solving food security issues in changing climates.


Asunto(s)
Biomasa , Sequías , Ambiente , Rizosfera , Estrés Fisiológico/genética , Triticum/genética , Fenotipo , Raíces de Plantas/genética , Plantones/genética
16.
Methods Mol Biol ; 1153: 161-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24777796

RESUMEN

Gas chromatography-mass spectrometry (GC-MS) is one of the most widely used methods for analyzing the emissions of biogenic volatile organic compounds (VOCs) from plants. Preconcentration of VOCs on the cartridges filled with different adsorbents is a well-accepted method for sampling of headspace. Here, we describe a gas-chromatographic method for determination of different isoprenoids (isoprene, monoterpenes, homoterpenes, and sesquiterpenes). The technique is based on adsorption of compounds of interest on multibed adsorbent cartridges followed by thermodesorption, and detection and analysis by GC-MS.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Plantas/química , Terpenos/análisis , Terpenos/química , Adsorción , Volatilización
17.
Environ Exp Bot ; 100: 55-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29367790

RESUMEN

Plant volatile organic compounds (VOCs) elicited in response to herbivory can serve as cues for parasitic and predatory insects, but the modification of VOC elicitation responses under interacting abiotic stresses is poorly known. We studied foliage VOC emissions in the deciduous tree Alnus glutinosa induced by feeding by the larvae of green alder sawfly (Monsoma pulveratum) under well-watered and drought-stressed conditions. Drought strongly curbed photosynthesis rate and stomatal conductance, but there were no effects of insect feeding on photosynthetic characteristics. Feeding induced emissions of volatile products of lipoxygenase pathway and monoterpenes, and emissions of stress marker compounds (E)-ß-ocimene and homoterpene DMNT. The emissions were more strongly elicited and reached a maximum value earlier in drought-stressed plants. In addition, methyl salicylate emissions were elicited in herbivory-fed drought-stressed plants. Herbivores were more strongly attracted to well-watered plants and consumed more than a four-fold greater fraction of leaf area than they consumed from drought-treated plants. Overall, this study demonstrates an important priming effect of drought, suggesting that plants under combined drought/herbivory stress are more resistant to herbivores.

18.
Front Plant Sci ; 4: 262, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23888161

RESUMEN

Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction response, possibly reflecting a systemic response. The dose-response relationships can also vary in dependence on plant genotype, herbivore feeding behavior, and plant pre-stress physiological status. Overall, the evidence suggests that there are quantitative relationships between the biotic stress severity and induced volatile emissions. These relationships constitute an encouraging platform to develop quantitative plant stress response models.

19.
Tree Physiol ; 33(4): 374-87, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23513034

RESUMEN

Understanding within-species variability in terpenoid content and composition is highly relevant for predicting species adaptive potential to biotic stresses, but there is still limited information on terpene variations even for widespread species. We studied the foliage content and composition of terpenoids, foliage structure, and carbon (C) and nitrogen (N) contents in Pinus sylvestris L. in four Estonian sites ranging from dry forest to raised bog. In the bogs, samples were taken along the environmental gradient from drier margins towards wetter central parts. A chiral column was used to gain insight into the variation in terpene composition. We hypothesized that terpene contents increase and the composition becomes more diverse in more strongly N-limited sites (greater C/N ratio) and that terpene signatures cluster together in sub-sites with similar conditions (drier/wetter). Altogether 37 terpenes were quantified across the sites. Extremely large variability of terpene contents, 48-62% for monoterpenes and 61-89% for sesquiterpenes, was observed. According to the amounts of α-pinenes and (+)-3-carene, we distinguished two different 'pine chemotypes'. Contrary to the hypothesis, terpene contents and variability were the greatest in the dry site with the lowest C/N ratio. However, individual terpenoids correlated differently with C or N in different sites, indicating site effects on terpene composition. Moreover, correlations between the terpenoids and C or N depended on the pine chemotype. The sub-sites with different water regime were more strongly clustered together within the site than across the sites. The study demonstrates extensive variations in terpene contents and composition among the populations and over short spatial distances within the populations, suggesting a large among- and within-population adaptive capacity of P. sylvestris.


Asunto(s)
Ambiente , Pinus/metabolismo , Suelo/química , Terpenos/metabolismo , Adaptación Fisiológica , Animales , Estonia , Cromatografía de Gases y Espectrometría de Masas , Herbivoria , Insectos/fisiología , Agua/metabolismo
20.
J Plant Physiol ; 169(7): 664-72, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22341571

RESUMEN

Plant-generated volatiles constitute a sensitive signal of stress response, but quantitative relationships between the stress severity and volatile emissions have been demonstrated only for a few stresses. Among important stresses in the field, chilling and frost stress in spring and heat stress mid-season can significantly curb productivity. We studied the effects of cold and heat shock treatments on leaf photosynthesis and the emission of the volatile products of the lipoxygenase pathway (LOX, also called green leaf volatiles) and mono- and sesquiterpene emissions in tomato (Solanum lycopersicum cv. Mato) to gain quantitative insights into temperature stress-elicited volatile emissions. Both cold and heat stress treatments ranged from mild, which only weakly affected foliage photosynthesis, to severe, which almost completely inhibited photosynthesis. Under non-stressed conditions, LOX emissions were close to the detection limit, and terpene emissions were low. Both cold and heat stress led to enhancement of LOX emissions according to a switch-type response with essentially no emissions under mild stress and major emissions under severe stress. The emissions of mono- and sesquiterpenes increased gradually with the severity of stress, but cold stress resulted in higher sesquiterpene emissions at any given monoterpene emission level. We suggest that the quantitative relationships between the stress strength and emissions observed in this study provide an important means to characterize the severity of cold and heat stresses.


Asunto(s)
Lipooxigenasa/metabolismo , Solanum lycopersicum/fisiología , Estrés Fisiológico , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Frío , Respuesta al Choque Térmico , Calor , Solanum lycopersicum/química , Solanum lycopersicum/enzimología , Monoterpenos/metabolismo , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...