Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Hum Mol Genet ; 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643062

Genotype imputation is widely used in genome-wide association studies (GWAS). However, both the genotyping chips and imputation reference panels are dependent on next-generation sequencing (NGS). Due to the nature of NGS, some regions of the genome are inaccessible to sequencing. To date, there has been no complete evaluation of these regions and their impact on the identification of associations in GWAS remains unclear. In this study, we systematically assess the extent to which variants in inaccessible regions are underrepresented on genotyping chips and imputation reference panels, in GWAS results and in variant databases. We also determine the proportion of genes located in inaccessible regions and compare the results across variant masks defined by the 1000 Genomes Project and the TOPMed program. Overall, fewer variants were observed in inaccessible regions in all categories analyzed. Depending on the mask used and normalized for region size, only 4%-17% of the genotyped variants are located in inaccessible regions and 52 to 581 genes were almost completely inaccessible. From the Cooperative Health Research in South Tyrol (CHRIS) study, we present a case study of an association located in an inaccessible region that is driven by genotyped variants and cannot be reproduced by imputation in GRCh37. We conclude that genotyping, NGS, genotype imputation and downstream analyses such as GWAS and fine mapping are systematically biased in inaccessible regions, due to missed variants and spurious associations. To help researchers assess gene and variant accessibility, we provide an online application (https://gab.gm.eurac.edu).

2.
Cell Rep ; 43(1): 113611, 2024 01 23.
Article En | MEDLINE | ID: mdl-38159276

Complement is a fundamental innate immune response component. Its alterations are associated with severe systemic diseases. To illuminate the complement's genetic underpinnings, we conduct genome-wide association studies of the functional activity of the classical (CP), lectin (LP), and alternative (AP) complement pathways in the Cooperative Health Research in South Tyrol study (n = 4,990). We identify seven loci, encompassing 13 independent, pathway-specific variants located in or near complement genes (CFHR4, C7, C2, MBL2) and non-complement genes (PDE3A, TNXB, ABO), explaining up to 74% of complement pathways' genetic heritability and implicating long-range haplotypes associated with LP at MBL2. Two-sample Mendelian randomization analyses, supported by transcriptome- and proteome-wide colocalization, confirm known causal pathways, establish within-complement feedback loops, and implicate causality of ABO on LP and of CFHR2 and C7 on AP. LP causally influences collectin-11 and KAAG1 levels and the risk of mouth ulcers. These results build a comprehensive resource to investigate the role of complement in human health.


Genome-Wide Association Study , Mannose-Binding Lectin , Humans , Complement Activation , Complement System Proteins/metabolism , Lectins/metabolism , Haplotypes/genetics , Mannose-Binding Lectin/genetics
3.
Nat Commun ; 14(1): 1287, 2023 03 09.
Article En | MEDLINE | ID: mdl-36890159

Genome-wide association studies have discovered hundreds of associations between common genotypes and kidney function but cannot comprehensively investigate rare coding variants. Here, we apply a genotype imputation approach to whole exome sequencing data from the UK Biobank to increase sample size from 166,891 to 408,511. We detect 158 rare variants and 105 genes significantly associated with one or more of five kidney function traits, including genes not previously linked to kidney disease in humans. The imputation-powered findings derive support from clinical record-based kidney disease information, such as for a previously unreported splice allele in PKD2, and from functional studies of a previously unreported frameshift allele in CLDN10. This cost-efficient approach boosts statistical power to detect and characterize both known and novel disease susceptibility variants and genes, can be generalized to larger future studies, and generates a comprehensive resource ( https://ckdgen-ukbb.gm.eurac.edu/ ) to direct experimental and clinical studies of kidney disease.


Exome , Genome-Wide Association Study , Humans , Exome/genetics , Biological Specimen Banks , Kidney , United Kingdom , Polymorphism, Single Nucleotide
4.
Comput Struct Biotechnol J ; 21: 1759-1773, 2023.
Article En | MEDLINE | ID: mdl-36915380

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) are commonly used to model arrhythmogenic cardiomyopathy (ACM), a heritable cardiac disease characterized by severe ventricular arrhythmias, fibrofatty myocardial replacement and progressive ventricular dysfunction. Although ACM is inherited as an autosomal dominant disease, incomplete penetrance and variable expressivity are extremely common, resulting in different clinical manifestations. Here, we propose hiPSC-CMs as a powerful in vitro model to study incomplete penetrance in ACM. Six hiPSC lines were generated from blood samples of three ACM patients carrying a heterozygous deletion of exon 4 in the PKP2 gene, two asymptomatic (ASY) carriers of the same mutation and one healthy control (CTR), all belonging to the same family. Whole exome sequencing was performed in all family members and hiPSC-CMs were examined by ddPCR, western blot, Wes™ immunoassay system, patch clamp, immunofluorescence and RNASeq. Our results show molecular and functional differences between ACM and ASY hiPSC-CMs, including a higher amount of mutated PKP2 mRNA, a lower expression of the connexin-43 protein, a lower overall density of sodium current, a higher intracellular lipid accumulation and sarcomere disorganization in ACM compared to ASY hiPSC-CMs. Differentially expressed genes were also found, supporting a predisposition for a fatty phenotype in ACM hiPSC-CMs. These data indicate that hiPSC-CMs are a suitable model to study incomplete penetrance in ACM.

5.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article En | MEDLINE | ID: mdl-36835380

Recently, we have described novel pyridyl indole esters and peptidomimetics as potent inhibitors of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) main protease. Here, we analysed the impact of these compounds on viral replication. It has been shown that some antivirals against SARS-CoV-2 act in a cell line-specific way. Thus, the compounds were tested in Vero, Huh-7, and Calu-3 cells. We showed that the protease inhibitors at 30 µM suppress viral replication by up to 5 orders of magnitude in Huh-7 cells, while in Calu-3 cells, suppression by 2 orders of magnitude was achieved. Three pyridin-3-yl indole-carboxylates inhibited viral replication in all cell lines, indicating that they might repress viral replication in human tissue as well. Thus, we investigated three compounds in human precision-cut lung slices and observed donor-dependent antiviral activity in this patient-near system. Our results provide evidence that even direct-acting antivirals may act in a cell line-specific manner.


COVID-19 , Hepatitis C, Chronic , Humans , Antiviral Agents/pharmacology , SARS-CoV-2 , Protease Inhibitors/pharmacology , Indoles/pharmacology
6.
Vaccines (Basel) ; 10(10)2022 Sep 27.
Article En | MEDLINE | ID: mdl-36298484

Aspirin, with its active compound acetylsalicylic acid (ASA), shows antiviral activity against rhino- and influenza viruses at high concentrations. We sought to investigate whether ASA and its metabolite salicylic acid (SA) inhibit SARS-CoV-2 since it might use similar pathways to influenza viruses. The compound-treated cells were infected with SARS-CoV-2. Viral replication was analysed by RTqPCR. The compounds suppressed SARS-CoV-2 replication in cell culture cells and a patient-near replication system using human precision-cut lung slices by two orders of magnitude. While the compounds did not interfere with viral entry, it led to lower viral RNA expression after 24 h, indicating that post-entry pathways were inhibited by the compounds.

7.
Cells ; 11(16)2022 08 15.
Article En | MEDLINE | ID: mdl-36010608

SARS-CoV-2 variants such as the delta or omicron variants, with higher transmission rates, accelerated the global COVID-19 pandemic. Thus, novel therapeutic strategies need to be deployed. The inhibition of acid sphingomyelinase (ASM), interfering with viral entry by fluoxetine was reported. Here, we described the acid ceramidase as an additional target of fluoxetine. To discover these effects, we synthesized an ASM-independent fluoxetine derivative, AKS466. High-resolution SARS-CoV-2-RNA FISH and RTqPCR analyses demonstrate that AKS466 down-regulates viral gene expression. It is shown that SARS-CoV-2 deacidifies the lysosomal pH using the ORF3 protein. However, treatment with AKS488 or fluoxetine lowers the lysosomal pH. Our biochemical results show that AKS466 localizes to the endo-lysosomal replication compartments of infected cells, and demonstrate the enrichment of the viral genomic, minus-stranded RNA and mRNAs there. Both fluoxetine and AKS466 inhibit the acid ceramidase activity, cause endo-lysosomal ceramide elevation, and interfere with viral replication. Furthermore, Ceranib-2, a specific acid ceramidase inhibitor, reduces SARS-CoV-2 replication and, most importantly, the exogenous supplementation of C6-ceramide interferes with viral replication. These results support the hypotheses that the acid ceramidase is a SARS-CoV-2 host factor.


Acid Ceramidase , COVID-19 Drug Treatment , Acid Ceramidase/genetics , Acid Ceramidase/metabolism , Fluoxetine , Humans , Pandemics , RNA , SARS-CoV-2
8.
Metabolites ; 12(7)2022 Jun 29.
Article En | MEDLINE | ID: mdl-35888728

Metabolites are intermediates or end products of biochemical processes involved in both health and disease. Here, we take advantage of the well-characterized Cooperative Health Research in South Tyrol (CHRIS) study to perform an exome-wide association study (ExWAS) on absolute concentrations of 175 metabolites in 3294 individuals. To increase power, we imputed the identified variants into an additional 2211 genotyped individuals of CHRIS. In the resulting dataset of 5505 individuals, we identified 85 single-variant genetic associations, of which 39 have not been reported previously. Fifteen associations emerged at ten variants with >5-fold enrichment in CHRIS compared to non-Finnish Europeans reported in the gnomAD database. For example, the CHRIS-enriched ETFDH stop gain variant p.Trp286Ter (rs1235904433-hexanoylcarnitine) and the MCCC2 stop lost variant p.Ter564GlnextTer3 (rs751970792-carnitine) have been found in patients with glutaric acidemia type II and 3-methylcrotonylglycinuria, respectively, but the loci have not been associated with the respective metabolites in a genome-wide association study (GWAS) previously. We further identified three gene-trait associations, where multiple rare variants contribute to the signal. These results not only provide further evidence for previously described associations, but also describe novel genes and mechanisms for diseases and disease-related traits.

9.
BMC Complement Med Ther ; 22(1): 181, 2022 Jul 08.
Article En | MEDLINE | ID: mdl-35804339

BACKGROUND: Anthocyanin-containing plant extracts and carotenoids, such as astaxanthin, have been well-known for their antiviral and anti-inflammatory activity, respectively. We hypothesised that a mixture of Ribes nigrum L. (Grossulariaceae) (common name black currant (BC)) and Vaccinium myrtillus L. (Ericaceae) (common name bilberry (BL)) extracts (BC/BL) with standardised anthocyanin content as well as single plant extracts interfered with the replication of Measles virus and Herpesviruses in vitro. METHODS: We treated cell cultures with BC/BL or defined single plant extracts, purified anthocyanins and astaxanthin in different concentrations and subsequently infected the cultures with the Measles virus (wild-type or vaccine strain Edmonston), Herpesvirus 1 or 8, or murine Cytomegalovirus. Then, we analysed the number of infected cells and viral infectivity and compared the data to non-treated controls. RESULTS: The BC/BL extract inhibited wild-type Measles virus replication, syncytia formation and cell-to-cell spread. This suppression was dependent on the wild-type virus-receptor-interaction since the Measles vaccine strain was unaffected by BC/BL treatment. Furthermore, the evidence was provided that the delphinidin-3-rutinoside chloride, a component of BC/BL, and purified astaxanthin, were effective anti-Measles virus compounds. Human Herpesvirus 1 and murine Cytomegalovirus replication was inhibited by BC/BL, single bilberry or black currant extracts, and the BC/BL component delphinidin-3-glucoside chloride. Additionally, we observed that BC/BL seemed to act synergistically with aciclovir. Moreover, BC/BL, the single bilberry and black currant extracts, and the BC/BL components delphinidin-3-glucoside chloride, cyanidin-3-glucoside, delphinidin-3-rutinoside chloride, and petunidin-3-galactoside inhibited human Herpesvirus 8 replication. CONCLUSIONS: Our data indicate that Measles viruses and Herpesviruses are differentially susceptible to a specific BC/BL mixture, single plant extracts, purified anthocyanins and astaxanthin. These compounds might be used in the prevention of viral diseases and in addition to direct-acting antivirals, such as aciclovir.


Hepatitis C, Chronic , Herpesviridae , Ribes , Vaccinium myrtillus , Acyclovir , Animals , Anthocyanins/pharmacology , Antiviral Agents/pharmacology , Chlorides , Fruit/chemistry , Humans , Measles virus , Mice , Plant Extracts/pharmacology
10.
Front Bioeng Biotechnol ; 10: 801870, 2022.
Article En | MEDLINE | ID: mdl-35309990

In 2019, the novel highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak rapidly led to a global pandemic with more than 346 million confirmed cases worldwide, resulting in 5.5 million associated deaths (January 2022). Entry of all SARS-CoV-2 variants is mediated by the cellular angisin-converting enzyme 2 (ACE2). The virus abundantly replicates in the epithelia of the upper respiratory tract. Beyond vaccines for immunization, there is an imminent need for novel treatment options in COVID-19 patients. So far, only a few drugs have found their way into the clinics, often with modest success. Specific gene silencing based on small interfering RNA (siRNA) has emerged as a promising strategy for therapeutic intervention, preventing/limiting SARS-CoV-2 entry into host cells or interfering with viral replication. Here, we pursued both strategies. We designed and screened nine siRNAs (siA1-9) targeting the viral entry receptor ACE2. SiA1, (siRNA against exon1 of ACE2 mRNA) was most efficient, with up to 90% knockdown of the ACE2 mRNA and protein for at least six days. In vitro, siA1 application was found to protect Vero E6 and Huh-7 cells from infection with SARS-CoV-2 with an up to ∼92% reduction of the viral burden indicating that the treatment targets both the endosomal and the viral entry at the cytoplasmic membrane. Since the RNA-encoded genome makes SARS-CoV-2 vulnerable to RNA interference (RNAi), we designed and analysed eight siRNAs (siV1-8) directly targeting the Orf1a/b region of the SARS-CoV-2 RNA genome, encoding for non-structural proteins (nsp). As a significant hallmark of this study, we identified siV1 (siRNA against leader protein of SARS-CoV-2), which targets the nsp1-encoding sequence (a.k.a. 'host shutoff factor') as particularly efficient. SiV1 inhibited SARS-CoV-2 replication in Vero E6 or Huh-7 cells by more than 99% or 97%, respectively. It neither led to toxic effects nor induced type I or III interferon production. Of note, sequence analyses revealed the target sequence of siV1 to be highly conserved in SARS-CoV-2 variants. Thus, our results identify the direct targeting of the viral RNA genome (ORF1a/b) by siRNAs as highly efficient and introduce siV1 as a particularly promising drug candidate for therapeutic intervention.

11.
Stem Cell Reports ; 17(2): 307-320, 2022 02 08.
Article En | MEDLINE | ID: mdl-35063125

Neurological complications are common in COVID-19. Although SARS-CoV-2 has been detected in patients' brain tissues, its entry routes and resulting consequences are not well understood. Here, we show a pronounced upregulation of interferon signaling pathways of the neurovascular unit in fatal COVID-19. By investigating the susceptibility of human induced pluripotent stem cell (hiPSC)-derived brain capillary endothelial-like cells (BCECs) to SARS-CoV-2 infection, we found that BCECs were infected and recapitulated transcriptional changes detected in vivo. While BCECs were not compromised in their paracellular tightness, we found SARS-CoV-2 in the basolateral compartment in transwell assays after apical infection, suggesting active replication and transcellular transport of virus across the blood-brain barrier (BBB) in vitro. Moreover, entry of SARS-CoV-2 into BCECs could be reduced by anti-spike-, anti-angiotensin-converting enzyme 2 (ACE2)-, and anti-neuropilin-1 (NRP1)-specific antibodies or the transmembrane protease serine subtype 2 (TMPRSS2) inhibitor nafamostat. Together, our data provide strong support for SARS-CoV-2 brain entry across the BBB resulting in increased interferon signaling.


Blood-Brain Barrier/virology , Central Nervous System/virology , SARS-CoV-2/physiology , Virus Internalization , Antibodies/pharmacology , Benzamidines/pharmacology , COVID-19/pathology , COVID-19/virology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/virology , Guanidines/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , RNA, Viral/metabolism , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Virus Internalization/drug effects
12.
Sci Rep ; 11(1): 19582, 2021 10 01.
Article En | MEDLINE | ID: mdl-34599261

Levodopa is the standard long-term dopamine replacement therapy to treat Parkinson's disease (PD) symptoms. With time, levodopa may induce debilitating dyskinesias (LID), the treatment of which represents a large clinically unmet need. However, time-to-LID onset varies between patients, reflecting a possible genetic component. We performed an hypothesis-free whole-exome sequencing (WES)-based screening of time-to-LID onset and attempted replication of previously published candidate gene studies. A WES association analysis was carried out in 134 PD patients in a meta-analytical framework. Replication was attempted in an independent study of 97 PD patients. Variants from previously reported candidate genes (OPRM1, COMT, BDNF) were also specifically examined. We significantly replicated, for the first time, an association of variant rs1799971 in the OPRM1 gene with time-to-LID onset. Furthermore, we identified two novel potentially functional variants, in the MAD2L2 (rs2233019) and MAP7 (rs35350783) genes, which were significantly associated at the discovery stage. In the replication study, the two variants showed direction-consistent effects but did not achieve the replication significance threshold. Our study provides the first WES results for time-to-LID onset, where we replicate association at OPRM1, and suggest new variants in MAD2L2 and MAP7 genes that are significant in discovery, but require larger datasets for replication. The results are being made publicly available to allow for independent external validation.


Disease Susceptibility , Dyskinesia, Drug-Induced/etiology , Exome Sequencing , Levodopa/adverse effects , Parkinson Disease/diagnosis , Parkinson Disease/etiology , Aged , Alleles , Biomarkers , Dyskinesia, Drug-Induced/diagnosis , Female , Gene Frequency , Humans , Male , Middle Aged , Odds Ratio , Symptom Assessment
13.
EMBO Mol Med ; 13(9): e14365, 2021 09 07.
Article En | MEDLINE | ID: mdl-34337880

Arrhythmogenic cardiomyopathy (ACM) is hallmarked by ventricular fibro-adipogenic alterations, contributing to cardiac dysfunctions and arrhythmias. Although genetically determined (e.g., PKP2 mutations), ACM phenotypes are highly variable. More data on phenotype modulators, clinical prognosticators, and etiological therapies are awaited. We hypothesized that oxidized low-density lipoprotein (oxLDL)-dependent activation of PPARγ, a recognized effector of ACM adipogenesis, contributes to disease pathogenesis. ACM patients showing high plasma concentration of oxLDL display severe clinical phenotypes in terms of fat infiltration, ventricular dysfunction, and major arrhythmic event risk. In ACM patient-derived cardiac cells, we demonstrated that oxLDLs are major cofactors of adipogenesis. Mechanistically, the increased lipid accumulation is mediated by oxLDL cell internalization through CD36, ultimately resulting in PPARγ upregulation. By boosting oxLDL in a Pkp2 heterozygous knock-out mice through high-fat diet feeding, we confirmed in vivo the oxidized lipid dependency of cardiac adipogenesis and right ventricle systolic impairment, which are counteracted by atorvastatin treatment. The modulatory role of oxidized lipids on ACM adipogenesis, demonstrated at cellular, mouse, and patient levels, represents a novel risk stratification tool and a target for ACM pharmacological strategies.


Arrhythmogenic Right Ventricular Dysplasia , Animals , Arrhythmias, Cardiac/etiology , Arrhythmogenic Right Ventricular Dysplasia/genetics , Humans , Lipoproteins, LDL , Mice , Phenotype
14.
Front Med (Lausanne) ; 7: 510475, 2020.
Article En | MEDLINE | ID: mdl-33117826

In 2013, the European Commission founded the platform European Innovation Partnership on Active and Healthy Aging as a communication and innovation network in this domain. The goal of the current study was the development of an integrated regional ecosystem for active and healthy aging for the region of Styria via a step-by-step co-creation process. A mixed model approach was used to establish an ecosystem for active and healthy aging, which includes macro-, meso- and micro-level stakeholders in the province of Styria, Austria. Based on the results, eight recommendations for the deployment of a healthy aging region were developed. The visibility and accessibility of healthy aging products and services were evaluated as key factors for innovation in active and healthy aging in the region. Health professionals were identified as major drivers of innovation related to active and healthy aging in Styria. The study presented in this article assessed the capacities for healthy aging in the Styria region and identified the need to improve communication pathways between all levels of the public health system and market.

15.
Elife ; 92020 02 26.
Article En | MEDLINE | ID: mdl-32101163

The transport and Golgi organization 1 (TANGO1) proteins play pivotal roles in the secretory pathway. Full length TANGO1 is a transmembrane protein localised at endoplasmic reticulum (ER) exit sites, where it binds bulky cargo within the ER lumen and recruits membranes from the ER Golgi intermediate compartment to create an exit route for their export. Here we report the first TANGO1-associated syndrome in humans. A synonymous substitution that results in exon eight skipping in most mRNA molecules, ultimately leading to a truncated TANGO1 protein was identified as disease-causing mutation. The four homozygously affected sons of a consanguineous family display severe dentinogenesis imperfecta, short stature, various skeletal abnormalities, insulin-dependent diabetes mellitus, sensorineural hearing loss, and mild intellectual disability. Functional studies in HeLa and U2OS cells revealed that the corresponding truncated TANGO1 protein is dispersed in the ER and its expression in cells with intact endogenous TANGO1 impairs cellular collagen I secretion.


Alleles , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Collagen/metabolism , Mutation , Cell Line, Tumor , Endoplasmic Reticulum/metabolism , Enhancer Elements, Genetic , Exons , Golgi Apparatus/metabolism , Humans , Protein Transport , Exome Sequencing
16.
Int J Cancer ; 145(4): 1020-1032, 2019 08 15.
Article En | MEDLINE | ID: mdl-30873613

Merkel cell carcinoma (MCC), an aggressive neuroendocrine skin tumor, is a polyomavirus-induced human cancer. To study the causal relationship of MCC carcinogenesis with the integrated Merkel cell polyomavirus (MCPyV) in detail, well-characterized MCC cell lines are needed. Consequently, in the current study, we established and characterized six MCPyV-positive MCC cell lines. Microarray-based comparative genomic hybridization revealed a stable genome carrying only a limited number of chromosomal gains and deletions. All cell lines expressed MCC markers Keratin-20 and neuron-specific enolase as well as truncated MCPyV-encoded large T antigen (LT). For five cell lines, we were able to identify the MCPyV-integration sites in introns of different genes. The LT-truncating stop codon mutations and integration sites were affirmed in the respective clinical patient samples. Inverse PCR suggested that three of the cell lines contained MCPyV genomes as concatemers. This notion was confirmed for the two cell lines with known integration sites. Importantly, our observation of distinct stop codon mutations in cell lines with concatemeric MCPyV integration indicates that these LT-truncating mutations occur before integration. In summary, we provide the detailed characterization of six MCPyV-positive MCC cell lines, which are likely to serve as valuable tools in future MCC research.


Antigens, Viral, Tumor/genetics , Carcinoma, Merkel Cell/genetics , Merkel cell polyomavirus/genetics , Polyomavirus Infections/genetics , Tumor Virus Infections/genetics , Animals , Carcinoma, Merkel Cell/virology , Cell Line, Tumor , Codon, Terminator/genetics , Genome, Viral/genetics , Humans , Mice , Mutation/genetics , Polyomavirus Infections/virology , Skin Neoplasms/genetics , Skin Neoplasms/virology , Tumor Virus Infections/virology
17.
Seizure ; 66: 81-85, 2019 Mar.
Article En | MEDLINE | ID: mdl-30818181

PURPOSE: Mutations in SZT2 have been previously reported in several cases of early onset epilepsy and intellectual disability. In this study we investigate potential causal mutations in two male siblings affected by early onset epilepsy, intellectual disability and macrocephaly. METHODS: We use family-based whole-exome sequencing to identify candidate variants. RESULTS: We report the identification of two potential causal SZT2 mutations in compound heterozygous state. We observe considerable differences in the clinical phenotype severity of the two affected individuals. The cerebral MRI revealed no abnormalities in the older affected brother, while in the youngest one it revealed a right frontal polymicrogiria. Moreover, while good seizure control was achieved in the older affected individual the younger brother is affected by pharmacoresistant epilepsy, progressive spastic paraplegia, cortical myoclonus and a more severe intellectual disability. We also analyzed the relative location of the reported pathogenic mutations in the SZT2 protein. CONCLUSION: Variable phenotypic expressivity is observed for this condition, while the location and type of mutations in SZT2 also has a potential impact on epilepsy severity. These findings extend our knowledge of epileptogenic conditions related to SZT2 and mTOR signaling.


Epilepsy/genetics , Family Health , Intellectual Disability/genetics , Megalencephaly/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Adult , DNA Mutational Analysis , Epilepsy/complications , Epilepsy/diagnostic imaging , Humans , Intellectual Disability/complications , Intellectual Disability/diagnostic imaging , Longitudinal Studies , Magnetic Resonance Imaging , Male , Megalencephaly/complications , Megalencephaly/diagnostic imaging , Exome Sequencing , Young Adult
18.
Mol Syndromol ; 9(5): 235-240, 2019 Jan.
Article En | MEDLINE | ID: mdl-30733657

Interstitial 5q22 deletions are relatively rare and usually represented by severe clinical features such as developmental delay and growth retardation. Here, we report a 23-year-old male patient, referred to our laboratory for genetic confirmation of possible familial adenomatous polyposis. MLPA and the subsequent array CGH identified an approximately 8-Mb-sized deletion in the 5q22.2q23.1 locus. Further analysis of the deleted region and the genes within suggested a possible role for the TSSK1B (testis-specific serine/threonine kinase 1) gene in the patient's reproductive capacity. Semen analysis confirmed that the patient's reproductive capability was impaired, and that he suffered from asthenoteratozoospermia. Analysis of the azoospermia factor region on the Y chromosome revealed no microdeletions. Further sequencing tests could not find an alternative explanation for the patient's infertility. This case demonstrates a possible role of TSSK1B in male reproduction.

19.
TH Open ; 2(4): e445-e454, 2018 Oct.
Article En | MEDLINE | ID: mdl-31249973

Inherited platelet disorders (IPD) form a rare and heterogeneous disease entity that is present in about 8% of patients with non-acquired bleeding diathesis. Identification of the defective cellular pathway is an important criterion for stratifying the patient's individual risk profile and for choosing personalized therapeutic options. While costs of high-throughput sequencing technologies have rapidly declined over the last decade, molecular genetic diagnosis of bleeding and platelet disorders is getting more and more suitable within the diagnostic algorithms. In this study, we developed, verified, and evaluated a targeted, panel-based next-generation sequencing approach comprising 59 genes associated with IPD for a cohort of 38 patients with a history of recurrent bleeding episodes and functionally suspected, but so far genetically undefined IPD. DNA samples from five patients with genetically defined IPD with disease-causing variants in WAS , RBM8A , FERMT3 , P2YR12 , and MYH9 served as controls during the validation process. In 40% of 35 patients analyzed, we were able to finally detect 15 variants, eight of which were novel, in 11 genes, ACTN1 , AP3B1 , GFI1B , HPS1 , HPS4 , HPS6 , MPL , MYH9 , TBXA2R , TPM4 , and TUBB1 , and classified them according to current guidelines. Apart from seven variants of uncertain significance in 11% of patients, nine variants were classified as likely pathogenic or pathogenic providing a molecular diagnosis for 26% of patients. This report also emphasizes on potentials and pitfalls of this tool and prospectively proposes its rational implementation within the diagnostic algorithms of IPD.

20.
BMC Med Genet ; 18(1): 145, 2017 12 08.
Article En | MEDLINE | ID: mdl-29221435

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) is an inherited genetic disorder, characterized by the substitution of heart muscle with fibro-fatty tissue and severe ventricular arrhythmias, often leading to heart failure and sudden cardiac death. ACM is considered a monogenic disorder, but the low penetrance of mutations identified in patients suggests the involvement of additional genetic or environmental factors. METHODS: We used whole exome sequencing to investigate digenic inheritance in two ACM families where previous diagnostic tests have revealed a PKP2 mutation in all affected and some healthy individuals. In family members with PKP2 mutations we determined all genes that harbor variants in affected but not in healthy carriers or vice versa. We computationally prioritized the most likely candidates, focusing on known ACM genes and genes related to PKP2 through protein interactions, functional relationships, or shared biological processes. RESULTS: We identified four candidate genes in family 1, namely DAG1, DAB2IP, CTBP2 and TCF25, and eleven candidate genes in family 2. The most promising gene in the second family is TTN, a gene previously associated with ACM, in which the affected individual harbors two rare deleterious-predicted missense variants, one of which is located in the protein's only serine kinase domain. CONCLUSIONS: In this study we report genes that might act as digenic players in ACM pathogenesis, on the basis of co-segregation with PKP2 mutations. Validation in larger cohorts is still required to prove the utility of this model.


Arrhythmogenic Right Ventricular Dysplasia/genetics , Adult , Aged , Aged, 80 and over , Alcohol Oxidoreductases/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Co-Repressor Proteins , Connectin/chemistry , Connectin/genetics , Dystroglycans/genetics , Female , Humans , Male , Middle Aged , Models, Molecular , Mutation , Nerve Tissue Proteins/genetics , Pedigree , Plakophilins/genetics , Protein Domains , Repressor Proteins/genetics , Exome Sequencing , ras GTPase-Activating Proteins/genetics
...