RESUMEN
A retrospective chart review was completed to examine psychological treatment duration and response among pediatric patients with a disorder of gut-brain interaction including functional abdominal pain and irritable bowel syndrome. Cognitive behavioral therapy (CBT) was delivered via telehealth with a licensed psychologist or supervised psychology trainee embedded in a pediatric gastroenterology clinic. Participants were 22 youth (mean age = 14.36 years) who received CBT via telehealth between February and September of 2021, after completing an initial evaluation between February and July of 2021. Patients completed reliable and valid self-report measures of functional disability and pain during treatment. A unique CBT model was employed with an initial focus on psychoeducation and function regardless of level of severity of functional impairment. Consistent with study hypotheses, nonparametric statistical analyses demonstrated statistically significant reductions in functional disability and pain following implementation of the CBT model via telehealth. Contrary to predictions, there was no relation found between severity of functional impairment and duration of treatment.
Asunto(s)
COVID-19 , Telemedicina , Adolescente , Humanos , Niño , Estudios Retrospectivos , Pandemias , Dolor Abdominal/etiología , Dolor Abdominal/terapia , Encéfalo , Resultado del TratamientoRESUMEN
Nitro fatty acids (NFAs) are endogenously generated lipid mediators deriving from reactions of unsaturated electrophilic fatty acids with reactive nitrogen species. Furthermore, Mediterranean diets can be a source of NFA. These highly electrophilic fatty acids can undergo Michael addition reaction with cysteine residues, leading to post-translational modifications (PTM) of selected regulatory proteins. Such modifications are capable of changing target protein function during cell signaling or in biosynthetic pathways. NFA target proteins include the peroxisome proliferator-activated receptor γ (PPAR-γ), the pro-inflammatory and tumorigenic nuclear factor-κB (NF-κB) signaling pathway, the pro-inflammatory 5-lipoxygenases (5-LO) biosynthesis pathway as well as soluble epoxide hydrolase (sEH), which is essentially involved in the regulation of vascular tone. In several animal models of inflammation and cancer, the therapeutic efficacy of well-tolerated NFA has been demonstrated. This has already led to clinical phase II studies investigating possible therapeutic effects of NFA in subjects with pulmonary arterial hypertension. Albeit Michael acceptors feature a broad spectrum of bioactivity, they have for a rather long time been avoided as drug candidates owing to their presumed unselective reactivity and toxicity. However, targeted covalent modification of regulatory proteins by Michael acceptors became recognized as a promising approach to drug discovery with the recent FDA approvals of the cancer therapeutics, afatanib (2013), ibrutinib (2013), and osimertinib (2015). Furthermore, the Michael acceptor, neratinib, a dual inhibitor of the human epidermal growth factor receptor 2 and epidermal growth factor receptor, was recently approved by the FDA (2017) and by the EMA (2018) for the treatment of breast cancer. Finally, a number of further Michael acceptor drug candidates are currently under clinical investigation for pharmacotherapy of inflammation and cancer. In this review, we focus on the pharmacology of NFA and other Michael acceptor drugs, summarizing their potential as an emerging class of future antiphlogistics and adjuvant in tumor therapeutics.