Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 34(10): 108826, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33691121

RESUMEN

A major pathway for proinflammatory protein release by macrophages is inflammasome-mediated pyroptotic cell death. As conventional secretion, unconventional secretion, and cell death are executed simultaneously, however, the cellular mechanisms regulating this complex paracrine program remain incompletely understood. Here, we devise a quantitative proteomics strategy to define the cellular exit route for each protein by pharmacological and genetic dissection of cellular checkpoints regulating protein release. We report the release of hundreds of proteins during pyroptosis, predominantly due to cell lysis. They comprise constitutively expressed and transcriptionally induced proteins derived from the cytoplasm and specific intracellular organelles. Many low-molecular-weight proteins including the cytokine interleukin-1ß, alarmins, and lysosomal-cargo proteins exit cells in the absence of cell lysis. Cytokines and alarmins are released in an endoplasmic reticulum (ER)-Golgi-dependent manner as free proteins rather than by extracellular vesicles. Our work provides an experimental framework for the dissection of cellular exit pathways and a resource for pyroptotic protein release.


Asunto(s)
Alarminas/análisis , Citocinas/análisis , Proteómica/métodos , Piroptosis , Adenosina Trifosfato/farmacología , Alarminas/metabolismo , Animales , Células Cultivadas , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Nigericina/farmacología , Espectrometría de Masas en Tándem
2.
Mol Cell Proteomics ; 18(12): 2401-2417, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31570497

RESUMEN

Novel tick-borne phleboviruses in the Phenuiviridae family, which are highly pathogenic in humans and all closely related to Uukuniemi virus (UUKV), have recently emerged on different continents. How phleboviruses assemble, bud, and exit cells remains largely elusive. Here, we performed high-resolution, label-free mass spectrometry analysis of UUKV immunoprecipitated from cell lysates and identified 39 cellular partners interacting with the viral envelope glycoproteins. The importance of these host factors for UUKV infection was validated by silencing each host factor by RNA interference. This revealed Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1), a guanine nucleotide exchange factor resident in the Golgi, as a critical host factor required for the UUKV life cycle. An inhibitor of GBF1, Golgicide A, confirmed the role of the cellular factor in UUKV infection. We could pinpoint the GBF1 requirement to UUKV replication and particle assembly. When the investigation was extended to viruses from various positive and negative RNA viral families, we found that not only phleboviruses rely on GBF1 for infection, but also Flavi-, Corona-, Rhabdo-, and Togaviridae In contrast, silencing or blocking GBF1 did not abrogate infection by the human adenovirus serotype 5 and immunodeficiency retrovirus type 1, the replication of both requires nuclear steps. Together our results indicate that UUKV relies on GBF1 for viral replication, assembly and egress. This study also highlights the proviral activity of GBF1 in the infection by a broad range of important zoonotic RNA viruses.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Virus Uukuniemi/fisiología , Animales , Antivirales/farmacología , Infecciones por Bunyaviridae/virología , Línea Celular Tumoral , Chlorocebus aethiops , Glicoproteínas/metabolismo , Interacciones Microbiota-Huesped , Humanos , Espectrometría de Masas , Proteómica , Piridinas/farmacología , Quinolinas/farmacología , Interferencia de ARN , Virus ARN/fisiología , Virus Uukuniemi/efectos de los fármacos , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Liberación del Virus , Replicación Viral
3.
Cell Rep ; 8(6): 1793-1807, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25220458

RESUMEN

The transformation of cells generally involves multiple genetic lesions that undermine control of both cell death and proliferation. We now report that κB-Ras proteins act as regulators of NF-κB and Ral pathways, which control inflammation/cell death and proliferation, respectively. Cells lacking κB-Ras therefore not only show increased NF-κB activity, which results in increased expression of inflammatory mediators, but also exhibit elevated Ral activity, which leads to enhanced anchorage-independent proliferation (AIP). κB-Ras deficiency consequently leads to significantly increased tumor growth that can be dampened by inhibiting either Ral or NF-κB pathways, revealing the unique tumor-suppressive potential of κB-Ras proteins. Remarkably, numerous human tumors show reduced levels of κB-Ras, and increasing the level of κB-Ras in these tumor cells impairs their ability to undergo AIP, thereby implicating κB-Ras proteins in human disease.


Asunto(s)
Inflamación , FN-kappa B/metabolismo , Proteínas de Unión al GTP ral/metabolismo , Proteínas ras/metabolismo , Animales , Carcinogénesis , Línea Celular , Proliferación Celular/genética , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Humanos , Proteínas I-kappa B/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Antígeno Nuclear de Célula en Proliferación/metabolismo , Interferencia de ARN , Transducción de Señal , Regulación hacia Arriba , Proteínas de Unión al GTP ral/antagonistas & inhibidores , Proteínas de Unión al GTP ral/genética , Proteínas ras/deficiencia , Proteínas ras/genética
4.
Front Immunol ; 4: 48, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23508552

RESUMEN

Upon activation, neutrophils release fibers composed of chromatin and neutrophil proteins termed neutrophil extracellular traps (NETs). NETs trap and kill microbes, activate dendritic cells and T cells, and are implicated in autoimmune and vascular diseases. Given the growing interest in the role of neutrophils in cancer immunoediting and the diverse function of NETs, we searched for NETs release by tumor-associated neutrophils (TANs). Using pediatric Ewing sarcoma (ES) as a model, we retrospectively examined histopathological material from diagnostic biopsies of eight patients (mean ± SD age of 11.5 ± 4.7 years). TANs were found in six patients and in two of those we identified NETs. These two patients presented with metastatic disease and despite entering complete remission after intensive chemotherapy had an early relapse. NETs were not identified in the diagnostic biopsies of two patients with localized disease and two with metastatic disease. This study is the first to show that TANs in ES are activated to make NETs, pointing to a possible role of NETs in cancer.

5.
Front Immunol ; 3: 413, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23316198

RESUMEN

Neutrophil Extracellular Traps (NETs) consist of decondensed chromatin studded with granular and some cytoplasmic proteins. They are formed by activated neutrophil granulocytes, also called polymorphonuclear leukocytes (PMN) as the result of an active cell death program, named NETosis. NETosis can be induced by a wide range of stimuli including coculture of neutrophils with pathogens (bacteria, fungi, parasites, virus particles), activated platelets, or pathogen components. The first step of the NETotic cascade is stimulation of one or several receptors followed by activation of the Raf/MEK/ERK pathway that culminates in the assembly of the multimeric NADPH oxidase complex and the production of reactive oxygen species (ROS). Later, intracellular membranes disintegrate, the granular protein Neutrophil Elastase enters the nucleus and processes core histones that also get hypercitrullinated. This leads to decondensation and mobilization of chromatin. The amount of NET formation varies with the degree of stimulation, and this is dependent on the type and concentration of the stimulus. NETs can be quantified using various methods including fluorescence microscopy or measuring DNA release. Each of these methods have specific drawbacks: analysis of fluorescence microscopy is prone to subjective variations, and DNA release does not differentiate between DNA that has been released by NETosis or by other forms of cell death. Here we present a protocol to semi-automatically quantify NET formation. It relies on the observation that anti-chromatin antibodies bind more readily to decondensed chromatin present in the nuclei of cells undergoing NETosis and in the NETs. Relating the fluorescence signals of the anti-chromatin antibody to the signals of a DNA-binding dye allows the automatic calculation of the percentage of netting neutrophils. This method does not require sophisticated microscopic equipment, and the images are quantified with a public-domain software package.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA