Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
BMC Biotechnol ; 24(1): 3, 2024 01 17.
Article En | MEDLINE | ID: mdl-38233817

The growing spread of infectious diseases has become a potential global health threat to human beings. According to WHO reports, in this study, we investigated the impact of co-cultivating the isolated endophytic fungus Aspergillus sp. CO2 and Bacillus sp. COBZ21 as a method to stimulate the production of natural bioactive substances. (GC/MS)-based metabolomics profiling of two sponge-associated microbes, Aspergillus sp. CO2 and Bacillus sp. COBZ21, revealed that the co-culture of these two isolates induced the accumulation of metabolites that were not traced in their axenic cultures. By detection of different activities of extracts of Bacillus sp. COBZ21 and Aspergillus sp. CO2 and coculture between Bacillus sp. COBZ21 and Aspergillus sp. CO2. It was noted that the coculture strategy was the reason for a notable increase in some different activities, such as the antimicrobial activity, which showed potent activity against Escherichia coli ATCC 25,922, Staphylococcus aureus NRRLB-767, and Candida albicans ATCC 10,231. The antibiofilm activity showed significant biofilm inhibitory activity toward Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 10,145, and Staph aureus NRRLB-767, with activity up to 53.66, 71.17, and 47.89%, while it showed low activity against E. coli ATCC 25,922, while the antioxidant activity based on the DPPH assay showed maximum activity (75.25%). GC-MS investigations revealed the presence of variable chemical constituents belonging to different chemical categories, which reflected their chemical diversity. The main components are (+-) cis-Deethylburnamine (2.66%), Bis(3,6,9,12-tetraoxapentaethylene) crowno-N,N,N',N'-tetra methylpphanediamine (2.48%), and 11-phenyl-2,4,6,8-tetra(2-thienyl)-11-aza-5,13-dithiaeteracyclo[7.3.0.1(2,8)0.0(3,7)] trideca-3,6-diene-10,12,13-trione (3.13%), respectively, for Bacillus sp. axenic culture, Aspergillus sp. CO2, Aspergillus sp. CO2, and Bacillus sp. COBZ21 coculture. By studying the ADME-related physicochemical properties of coculture extract, the compound showed log Po/w values above 5 (8.82). The solubility of the substance was moderate. In order to provide a comprehensive definition of medicinal chemistry and leadlikness, it is important to note that the latter did not meet the criteria outlined in the rule of three (RO3). The toxicity prediction of the coculture extract was performed using the ProTox II web server, which showed that the selected compound has no pronounced toxicity.


Anti-Infective Agents , Bacillus , Humans , Bacillus/metabolism , Antioxidants/pharmacology , Carbon Dioxide/metabolism , Escherichia coli/metabolism , Microbial Sensitivity Tests , Anti-Infective Agents/chemistry , Aspergillus/metabolism , Staphylococcus aureus , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology
2.
Microb Pathog ; 178: 106055, 2023 May.
Article En | MEDLINE | ID: mdl-36914056

Beta-hemolytic multidrug-resistant bacteria (MDR) are highly regarded as a major public health risk because they are resistant to at least 10 antibiotics in different groups with different mechanisms of action. The present study shows that among 98 bacterial isolates collected from laboratory fecal samples: 15 were beta-hemolytic and tested against 10 different antibiotics. 15 beta-hemolytic; 5 isolates exhibit strong multidrug resistance traits. Isolate 5 Escherichia coli (E. coli), Isolate 7 (E. coli), Isolate 21 (Enterococcus faecium), Isolate 27 (Staphylococcus sciuri), and isolate 36 (E. coli) are largely untested antibiotics. Substances (clear zone >10 mm) Its growth sensitivity to different types of nanoparticles was further evaluated by the agar well diffusion method. AgO, TiO2, ZnO, and Fe3O4 nanoparticles have been separately synthesized by microbial and plant-mediated biosynthesis. By evaluating the antibacterial activity of different nanoparticle types against selected MDR isolates, the results showed that global MDR bacterial growth was inhibited differently depending on the nanoparticle type. TiO2 was the most potent antibacterial nanoparticle type, followed by AgO, while Fe3O4 showed the least efficacy against selected isolates. The MICs of microbially synthesized AgO and TiO2 nanoparticles were 3 µg (67.2 µg/mL) and 9 µg (180 µg/mL) for isolates 5 and 27, respectively, indicating that biosynthetic nanoparticles via pomegranate of antibacterial activity at a higher MIC than microbial-mediated ones, it recorded (300 and 375 µg/ml, respectively) of AgO and TiO2 nanoparticles for isolates 5 and 27. Biosynthesized nanoparticles were examined by TEM, the average sizes of microbial AgO and TiO2 nanoparticles were 30 nm and 70 nm, respectively, and the average sizes of plant mediated AgO and TiO2 NPs were 52 nm and 82 nm respectively. Two most potent extensive MDR isolates (5 and 27) were identified as E. coli and Staphylococcus sciuri by 16s rDNA technology, and the sequencing results of the isolates were deposited with NCBI GenBank under accession numbers ON739202 and ON739204, respectively.


Metal Nanoparticles , Nanoparticles , Oxides , Escherichia coli/genetics , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
3.
J Genet Eng Biotechnol ; 20(1): 94, 2022 Jul 01.
Article En | MEDLINE | ID: mdl-35776246

BACKGROUND: Fungal peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze lignin biodegradation. RESULTS: PER-K (peroxidase synthesis codon gene) was transformed from Aspergillus niger strain AN512 deposited in the National Center for Biotechnology Information with the accession number OK323140 to Escherichia coli strain (BL21-T7 with YEp356R recombinant plasmid) via calcium chloride heat-shock method. The impact of four parameters (CaCl2 concentrations, centrifugation time, shaking speed, growth intensity) on the efficacy of the transformation process was evaluated. Furthermore, peroxidase production after optimization was assessed both qualitatively and quantitatively, as well as SDS-PAGE analysis. The optimum conditions for a successful transformation process were as follows: CaCl2 concentrations (50 mM), centrifugation time (20 min), shaking speed (200 rpm), and growth optical density (0.45). PCR and gel electrophoresis detect DNA bands with lengths 175, 179, and 211 bps corresponding to UA3, AmpR, and PER-K genes respectively besides partially sequencing the PER-K gene. Pyrogallol/hydrogen peroxide assay confirmed peroxidase production, and the activity of the enzyme was determined to be 3924 U/L. SDS-PAGE analysis also confirms peroxidase production illustrated by the appearance of a single peroxidase protein band after staining with Coomassie blue R-250. CONCLUSION: A successful peroxidase-gene (PER-K) transformation from fungi to bacteria was performed correctly. The enzyme activity was screened, and partial sequencing of PER-K gene was analyzed successively. The protein 3D structure was generated via in silico homology modeling, and determination of binding sites and biological annotations of the constructed protein were carried out via COACH and COFACTOR based on the I-TASSER structure prediction.

...