Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 93(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651356

RESUMEN

Human respiratory syncytial virus (RSV) is a major pediatric respiratory pathogen. The attachment (G) and fusion (F) glycoproteins are major neutralization and protective antigens. RSV G is expressed as membrane-anchored (mG) and -secreted (sG) forms, both containing a central fractalkine-like CX3C motif. The CX3C motif and sG are thought to interfere with host immune responses and have been suggested to be omitted from a vaccine. We used a chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express RSV wild-type (wt) G and modified forms, including sG alone, mG alone, mutants with ablated CX3C, and G with enhanced packaging into vector virions. In hamsters, these viruses replicated to similar titers. When assayed with a complement-enhanced neutralization assay in Vero cells, sG did not reduce the serum RSV- or PIV3-neutralizing antibody (NAb) responses, whereas ablating CX3C drastically reduced the RSV NAb response. Protective efficacy against RSV challenge was not reduced by sG but was strongly dependent on the CX3C motif. In ciliated human airway epithelial (HAE) cells, NAbs induced by wt G, but not by wt F, completely blocked RSV infection in the absence of added complement. This activity was dependent on the integrity of the CX3C motif. In hamsters, the rB/HPIV3 expressing wt G conferred better protection against RSV challenge than that expressing wt F. Codon optimization of the wt G further increased its immunogenicity and protective efficacy. This study showed that ablation of the CX3C motif or sG in an RSV vaccine, as has been suggested previously, would be ill advised.IMPORTANCE Human RSV is the leading viral cause of severe pediatric respiratory illness. An RSV vaccine is not yet available. The RSV attachment protein G is an important protective and neutralization antigen. G contains a conserved fractalkine-like CX3C motif and is expressed in mG and sG forms. sG and the CX3C motif are thought to interfere with host immune responses, but this remains poorly characterized. Here, we used an attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) vector to express various modified forms of RSV G. We demonstrated that strong antibody and protective responses could be induced by G alone, and that this was highly dependent on the integrity of the CX3C motif. There was no evidence that sG or the CX3C motif impaired immune responses against RSV G or the rB/HPIV3 vector. rB/HPIV3 expressing wt RSV G provides a bivalent vaccine against RSV and HPIV3.


Asunto(s)
Vectores Genéticos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Respirovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Bovinos , Niño , Chlorocebus aethiops , Femenino , Humanos , Macaca mulatta , Mesocricetus , Infecciones por Virus Sincitial Respiratorio/virología , Células Vero , Proteínas Virales de Fusión/inmunología , Virión/inmunología , Replicación Viral/inmunología
2.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28539444

RESUMEN

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory tract disease worldwide, but it lacks a licensed vaccine or suitable antiviral drug. A live attenuated chimeric bovine/human parainfluenza virus type 3 (rB/HPIV3) was developed previously as a vector expressing RSV fusion (F) protein to confer bivalent protection against RSV and HPIV3. In a previous clinical trial in virus-naive children, rB/HPIV3 was well tolerated but the immunogenicity of wild-type RSV F was unsatisfactory. We previously modified RSV F with a designed disulfide bond (DS) to increase stability in the prefusion (pre-F) conformation and to be efficiently packaged in the vector virion. Here, we further stabilized pre-F by adding both disulfide and cavity-filling mutations (DS-Cav1), and we also modified RSV F codon usage to have a lower CpG content and a higher level of expression. This RSV F open reading frame was evaluated in rB/HPIV3 in three forms: (i) pre-F without vector-packaging signal, (ii) pre-F with vector-packaging signal, and (iii) secreted pre-F ectodomain trimer. Despite being efficiently expressed, the secreted pre-F was poorly immunogenic. DS-Cav1 stabilized pre-F, with or without packaging, induced higher titers of pre-F specific antibodies in hamsters, and improved the quality of RSV-neutralizing serum antibodies. Codon-optimized RSV F containing fewer CpG dinucleotides had higher F expression, replicated more efficiently in vivo, and was more immunogenic. The combination of DS-Cav1 pre-F stabilization, optimized codon usage, reduced CpG content, and vector packaging significantly improved vector immunogenicity and protective efficacy against RSV. This provides an improved vectored RSV vaccine candidate suitable for pediatric clinical evaluation.IMPORTANCE RSV and HPIV3 are the first and second leading viral causes of severe pediatric respiratory disease worldwide. Licensed vaccines or suitable antiviral drugs are not available. We are developing a chimeric rB/HPIV3 vector expressing RSV F as a bivalent RSV/HPIV3 vaccine and have been evaluating means to increase RSV F immunogenicity. In this study, we evaluated the effects of improved stabilization of F in the pre-F conformation and of codon optimization resulting in reduced CpG content and greater pre-F expression. Reduced CpG content dampened the interferon response to infection, promoting higher replication and increased F expression. We demonstrate that improved pre-F stabilization and strategic manipulation of codon usage, together with efficient pre-F packaging into vector virions, significantly increased F immunogenicity in the bivalent RSV/HPIV3 vaccine. The improved immunogenicity included induction of increased titers of high-quality complement-independent antibodies with greater pre-F site Ø binding and greater protection against RSV challenge.


Asunto(s)
Portadores de Fármacos , Vacunas contra Virus Sincitial Respiratorio/inmunología , Respirovirus/fisiología , Proteínas Virales de Fusión/inmunología , Virión/metabolismo , Ensamble de Virus , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Codón , Cricetinae , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/genética , Respirovirus/genética , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Virión/genética
3.
J Virol ; 90(21): 10022-10038, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581977

RESUMEN

Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE: Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.


Asunto(s)
Anticuerpos Neutralizantes/genética , Vectores Genéticos/genética , Virus de la Parainfluenza 3 Bovina/genética , Virus de la Parainfluenza 3 Humana/genética , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Cápside/metabolismo , Bovinos , Línea Celular , Chlorocebus aethiops , Cricetinae , Humanos , Macaca mulatta , Virus de la Parainfluenza 3 Bovina/inmunología , Virus de la Parainfluenza 3 Humana/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/genética , Vacunas contra Virus Sincitial Respiratorio/inmunología , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Células Vero , Proteínas Virales de Fusión/inmunología , Replicación Viral/genética
4.
J Virol ; 89(18): 9499-510, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26157122

RESUMEN

UNLABELLED: Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. IMPORTANCE: Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F insert. Here, we increased RSV F expression by codon optimization and by modifying the RSV F amino acid sequence to conform to that of an early passage of the original isolate. This resulted in a hypofusogenic phenotype, which likely represents the original phenotype before adaptation to cell culture. We also included stabilized versions of prefusion and postfusion RSV F protein. Prefusion RSV F induced a larger quantity and higher quality of RSV-neutralizing serum antibodies and was highly protective. This provides an improved candidate for further clinical evaluation.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Expresión Génica , Virus de la Parainfluenza 3 Humana/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Chlorocebus aethiops , Cricetinae , Humanos , Virus de la Parainfluenza 3 Humana/genética , Proteínas Recombinantes , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/metabolismo , Células Vero , Proteínas Virales de Fusión/biosíntesis , Proteínas Virales de Fusión/genética , Vacunas Virales/genética , Vacunas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...