Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(11): 116301, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563917

RESUMEN

Recent theoretical and experimental research suggests that θ-TaN is a semimetal with high thermal conductivity (κ), primarily due to the contribution of phonons (κ_{ph}). By using first-principles calculations, we show a nonmonotonic pressure dependence of the κ of θ-TaN. κ_{ph} first increases until it reaches a maximum at around 60 GPa, and then decreases. This anomalous behavior is a consequence of the competing pressure responses of phonon-phonon and phonon-electron interactions, in contrast to the known materials BAs and BP, where the nonmonotonic pressure dependence is caused by the interplay between different phonon-phonon scattering channels. Although TaN has phonon dispersion features similar to BAs at ambient pressure, its response to pressure is different and an overall stiffening of the phonon branches takes place. Consequently, the relevant phonon-phonon scattering weakens as pressure increases. However, the increased electronic density of states near the Fermi level, and specifically the emergence of additional pockets of the Fermi surface at the high-symmetry L point in the Brillouin zone, leads to a substantial increase in phonon-electron scattering at high pressures, driving a decrease in κ_{ph}. At intermediate pressures (∼20-70 GPa), the κ of TaN surpasses that of BAs. Our Letter provides deeper insight into phonon transport in semimetals and metals where phonon-electron scattering is relevant.

2.
J Phys Condens Matter ; 31(48): 485707, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31486414

RESUMEN

ZrSiS was recently shown to be a new material with topologically non-trivial band structure that exhibits multiple Dirac nodes and a robust linear band dispersion up to an unusually high energy of 2 eV. Such a robust linear dispersion makes the topological properties of ZrSiS insensitive to perturbations like carrier doping or lattice distortion. Here, we show that a novel superconducting phase with a remarkably high [Formula: see text] of 7.5 K can be induced in single crystals of ZrSiS by a non-superconducting metallic tip of Ag. From first-principles calculations, we show that the observed superconducting phase might originate from a dramatic enhancement of density of states due to the presence of a metallic tip on ZrSiS. Our calculations also show that the emerging tip-induced superconducting phase co-exists with the well preserved topological properties of ZrSiS.

3.
J Phys Condens Matter ; 31(41): 415601, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31239429

RESUMEN

The physical systems with ferromagnetism and 'bad' metallicity hosting unusual transport properties are playgrounds of novel quantum phenomena. Recently EuTi1-x Nb x O3 emerged as a ferromagnetic system where non-trivial temperature dependent transport properties are observed due to coexistence and competition of various magnetic and non-magnetic scattering processes. In the ferromagnetic state, the resistivity shows a T 2 temperature dependence possibly due to electron-magnon scattering and above the Curie temperature [Formula: see text], the dependence changes to T 3/2 behaviour indicating a correlation between transport and magnetic properties. In this paper, we show that the transport spin-polarization ([Formula: see text]) in EuTi1-x Nb x O3, a low Curie temperature ferromagnet, is as high (∼40%) as that in some of the metallic ferromagnets with high Curie temperatures. In addition, owing to the low Curie temperature of EuTi1-x Nb x O3, the temperature (T) dependence of [Formula: see text] could be measured systematically up to [Formula: see text] which revealed a proportionate relationship with magnetization [Formula: see text] versus T. This indicates that such proportionality is far more universally valid than the ferromagnets with ideal parabolic bands. Furthermore, our band structure calculations not only helped to understand the origin of such high spin polarization in EuTi1-x Nb x O3 but also provided a route to estimate the Hubbard U parameter in complex metallic ferromagnets in general using experimental inputs.

4.
J Phys Condens Matter ; 30(25): 255002, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29708502

RESUMEN

For certain complex superconducting systems, the superconducting properties get enhanced under mesoscopic point contacts made of elemental non-superconducting metals. However, understanding of the mechanism through which such contact induced local enhancement of superconductivity happens has been limited due to the complex nature of such compounds. In this paper we present a large enhancement of superconducting transition temperature T c and superconducting energy gap Δ in a simple elemental superconductor Zr. While bulk Zr shows a critical temperature around 0.6 K, superconductivity survives at Ag/Zr and Pt/Zr point contacts up to 3 K with a corresponding five-fold enhancement of Δ. Further, the first-principles calculations on a model system provide useful insights. We show that the enhancement in superconducting properties can be attributed to a modification in the electron-phonon coupling accompanied by an enhancement of the density of states which involves the appearance of a new electron band at the Ag/Zr interfaces.

5.
Nanoscale ; 10(16): 7630-7638, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29645024

RESUMEN

Li metal is the most promising choice for anode in high-energy rechargeable batteries, but the dendrite growth upon cycling leads to safety concerns and poor cycle life. Herein, we demonstrate a novel and scalable approach for direct writing of a thin layer of carbon nano-onions on copper substrate to stabilize the Li metal anode and prevent the dendrite growth. The F-doped carbon nano-onion film (F-CNOF) scaffold enables reversible electroplating for over 1500 hours (300 cycles) with a coulombic efficiency of ∼100%. The F-CNOF is capable of depositing Li equivalent to a capacity of 10 mA h cm-2 (gravimetric capacity 3218 mA h g-1) at 1 mA cm-2, operating at a high current density of 6 mA cm-2. More importantly, these features of long-term cyclic stability and excellent rate capability are attributed to the very high curvature due to nano dimension (∼108 m-1) of the nano-onions that develop a very uniform Li flux due to the negative surface charge, thus preventing the dendrite formation. We have also shown via first-principles DFT calculations that the high curvature achieved herein can significantly enhance the binding energy of Li to the carbon surface, which helps to improve lithiophilicity. A full cell fabricated using Li4Ti5O12 as the positive electrode showed cyclic stability of 450 cycles.

6.
Angew Chem Int Ed Engl ; 57(26): 7682-7686, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29693308

RESUMEN

An ordered self-assembly of CsPbBr3 quantum dots (QDs) was generated on the surface of few-layer black phosphorus (FLBP). Strong quenching of the QD fluorescence was observed, and analyzed by time-resolved photoluminescence (TR-PL) studies, DFT calculations, and photoconductivity measurements. Charge transfer by type I band alignment is suggested to be the cause of the observed effects.

7.
J Phys Condens Matter ; 27(5): 056002, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25604275

RESUMEN

In this paper, we have studied the composition dependent evolution of geometric and magnetic structures of MnO clusters within density functional theory. The magnetic structures are determined by the competition between direct and superexchange interactions, which have been analyzed by the parameters obtained from maximally localized Wannier functions. The intrinsic electronic structures of the clusters have been thoroughly studied by looking into the hybridization (quantified using the Hybridization Index) and charge transfer scenario. Further, the importance of electron correlation in describing simple Mn-dimer and MnO clusters has been discussed within the Hubbard model and hybrid exchange-correlation functional. Our calculated vertical detachment energies of off-stoichiometric MnO clusters compare well with the recent experimental results. Interestingly, the charged state of the cluster strongly influences the geometry and the magnetic structure of the cluster, which are very different from the corresponding neutral counterpart. We have demonstrated that the exchange interaction between Mn atoms can be switched between ferromagnetic and anitiferromagnetic ones by changing the charge state and hence can be useful for spin-based information technology.

8.
Phys Rev Lett ; 105(9): 095501, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20868174

RESUMEN

Here we report kinetic Monte Carlo simulations of dislocation climb in heavily deformed, body-centered cubic iron comprising a supersaturation of vacancies. This approach explicitly incorporates the effect of nonlinear vacancy-dislocation interaction on vacancy migration barriers as determined from atomistic calculations, and enables observations of diffusivity and climb over time scales and temperatures relevant to power-law creep. By capturing the underlying microscopic physics, the calculated stress exponents for steady-state creep rates agree quantitatively with the experimentally measured range, and qualitatively with the stress dependence of creep activation energies.

9.
J Nanosci Nanotechnol ; 9(9): 5489-92, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19928250

RESUMEN

Structural stability of small sized nonstoichiometric CdS nano clusters between zincblende and wurtzite structures has been investigated using first-principles density functional calculations. Our study shows that the relative stability of these two structures depends sensitively on whether the surface is S-terminated or Cd-terminated. The associated band gap also exhibits non-monotonic behavior as a function of cluster size. Our findings may shed light on contradictory reports of experimentally observed structures of CdS nano clusters found in the literature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...