Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Drug Target ; 23(7-8): 698-709, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26453165

RESUMEN

BACKGROUND: Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is a major lipid second messenger in insulin-mediated signalling towards the metabolic actions of this hormone in muscle and fat. PURPOSE: Assessing the intracellular transport of exogenous PIP3 attached to a polymeric carrier in an attempt to overcome cellular insulin resistance. METHODS: Artificial chromatic bio-mimetic membrane vesicles composed of dimyristoylphosphatidylcholine and polydiacetylene were applied to screen the polymeric carriers. PIP3 cellular localization and bio-activity was assessed by fluorescent and live-cell microscopy in L6 muscle cells and in 3T3-L1 adipocytes. RESULTS AND DISCUSSION: We demonstrate that a specific-branched polyethylenimine (PEI-25, 25 kDa) carrier forms complexes with PIP3 that interact with the bio-mimetic membrane vesicles in a manner predictive of their interaction with cells: In L6 muscle cells, PEI-25/fluorescent-PIP3 complexes are retarded at the cell perimeter. PEI-25/PIP3 complexes retain their bio-activity, engaging signalling steps downstream of PIP3, even in muscle cells rendered insulin resistant by exposure to high glucose/high insulin. CONCLUSIONS: Inducing insulin actions by intracellular PIP3 delivery (PEI-25/PIP3 complexes) in some forms of insulin-resistant cells provides the first proof-of-principle for the potential therapeutic use of PIP3 in a "second-messenger agonist" approach. In addition, utilization of an artificial bio-mimetic membrane platform to screen for highly efficient PIP3 delivery predicts biological function in cells.


Asunto(s)
Sistemas de Liberación de Medicamentos , Resistencia a la Insulina , Insulina/metabolismo , Fosfatos de Fosfatidilinositol/administración & dosificación , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Células Cultivadas , Portadores de Fármacos/química , Ratones , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Fosfatos de Fosfatidilinositol/farmacología , Polietileneimina/química , Polímeros/química , Ratas , Transducción de Señal/efectos de los fármacos
2.
Physiol Rev ; 89(1): 27-71, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19126754

RESUMEN

Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.


Asunto(s)
Insulina/fisiología , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Animales , Antioxidantes/fisiología , Humanos , Resistencia a la Insulina/fisiología , Estrés Oxidativo/fisiología
3.
Endocrinology ; 150(6): 2618-26, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19179444

RESUMEN

Adipocyte insulin resistance can be caused by proximal insulin signaling defects but also from postreceptor mechanisms, which in large are poorly characterized. Adipocytes exposed for 18 h to the HIV protease inhibitor nelfinavir manifest insulin resistance characterized by normal insulin-stimulated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate proteins, preserved in vitro phosphatidylinositol 3-kinase (PI 3-kinase) assay activity but impaired activation of PKB/Akt and stimulation of glucose uptake. Here we aimed to assess whether impaired PKB/Akt activation is indeed rate limiting for insulin signaling propagation in response to nelfinavir and the mechanism for defective PKB/Akt activation. Nelfinavir treatment of 3T3-L1 adipocytes impaired the insulin-stimulated translocation and membrane fusion of myc-glucose transporter (GLUT)-4-green fluorescent protein (GFP) reporter. Phosphorylation of PKB/Akt substrates including glycogen synthase kinase-3 and AS160 decreased in response to nelfinavir, and this remained true, even in cells with forced generation of phosphatidylinositol-3,4,5-trisphohphate (PIP(3)) by a membrane-targeted active PI 3-kinase, confirming that impaired PKB/Akt activation was rate limiting for insulin signal propagation. Cells expressing a GFP-tagged pleckstrin homology domain of general receptors for phosphoinositides 1, which binds PIP(3), revealed intact PIP(3)-mediated plasma membrane translocation of this reporter in nelfinavir-treated cells. However, expression of a membrane-targeted catalytic subunit of PI 3-kinase failed to induce myc-GLUT4-GFP translocation in the absence of insulin, as it did in control cells. Conversely, a membrane-targeted and constitutively active PKB/Akt mutant was normally phosphorylated on S473 and T308, confirming intact PKB/Akt kinases activity, and induced myc-GLUT4-GFP translocation. Collectively, nelfinavir uncovers a postreceptor mechanism for insulin resistance, caused by interference with the sensing of PIP(3) by PKB/Akt, leading to impaired GLUT4 translocation and membrane fusion.


Asunto(s)
Adipocitos/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Resistencia a la Insulina/fisiología , Nelfinavir/farmacología , Fosfatos de Fosfatidilinositol/farmacología , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Animales , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Insulina/metabolismo , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/efectos de los fármacos , Receptor de Insulina/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...