Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Surg Neurol Int ; 15: 250, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108383

RESUMEN

Background: Malignant melanotic nerve sheath tumors (MMNSTs) are relatively rare, comprising <1% of all neoplastic peripheral nerve lesions. Here, we describe a 79-year-old male who presented with atypical magnetic resonance imaging (MRI) findings of an MMNST. Case Description: A 79-year-old male presented with lower back pain, paraparesis, and bladder/bowel dysfunction. The MRI showed an intradural extramedullary (IE) lesion at the T9-T10 level with low-signal intensity on T1-weighted images (WI) and high intensity on T2-WI, which markedly enhanced with contrast. The IE nerve root involved with the tumor was completely removed surgically. The lesion was confirmed to be an MMNST. In the absence of metastases, adjuvant therapy was deemed unnecessary. One year later, the lesion has not recurred. Conclusion: A 79-year-old male patient presented with a T9-T10 MR intradural lesion that was pathologically proved to be an MMNST, which was treated with gross total surgical resection (i.e., removal of the involved nerve root alone).

2.
J Am Chem Soc ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121456

RESUMEN

Polyoxometalates (POMs), anionic nanosized oxoclusters that can be considered as fragments of metal oxides, have been extensively studied for their diverse composition and structure, showing promise in various fields such as catalysis and electronics. Proton conduction, relevant to catalysis and electronics, has attracted interest in materials chemistry, and POM anions are advantageous in terms of their proton carrier density and mobility. Recently, polar POMs have attracted attention for their unique ferroelectric behaviors, yet they have been little studied with regard to proton conduction, as their polarity has generally been believed to have a negative impact. Here, we propose that polar POMs can be used to align polar proton carriers, such as H2O and polymers, to construct efficient proton-conducting pathways. In this study, we present ionic crystals composed of polar Preyssler-type POMs ([Xn+(H2O)P5W30O110](15-n)-, Xn+ = Ca2+, Eu3+) and K+ exhibiting ultrahigh proton conductivity surpassing 10-2 S cm-1, which is required for practical applications. In contrast, ionic crystals with nonpolar Preyssler-type POMs show an order of magnitude lower proton conductivity. Structural and spectroscopic studies combined with theoretical calculations reveal that proton carriers align with the aid of staggered arrays of polar POMs, forming a hydrogen-bonding network favorable for proton conduction. This study integrates molecular chemistry by the design of POMs and solid-state chemistry by exploring long-range proton conduction mechanisms, offering novel insights for future materials design.

3.
Chem Sci ; 15(30): 11856-11864, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092095

RESUMEN

In extended solid-state materials, the manipulation of chemical bonds through redox reactions often leads to the emergence of interesting properties, such as unconventional superconductivity, which can be achieved by adjusting the Fermi level through, e.g., intercalation and pressure. Here, we demonstrate that the internal 'biaxial strain' in tri-layered fluorite oxychloride photocatalysts can regulate bond formation and cleavage without redox processes. We achieve this by synthesizing the isovalent solid solution Bi2-x Sb x YO4Cl, which undergoes a structural phase transition from the ideal Bi2YO4Cl structure to the Sb2YO4Cl structure with (Bi,Sb)4O8 rings. Initially, substitution of smaller Sb induces expected lattice contraction, but further substitution beyond x > 0.6 triggers an unusual lattice expansion before the phase transition at x = 1.5. Detailed analysis reveals structural instability at high x values, characterized by Sb-O underbonding, which is attributed to tensile strain exerted from the inner Y sublayer to the outer (Bi,Sb)O sublayer within the triple fluorite block - a concept well-recognized in thin film studies. This concept also explains the formation of zigzag Bi-O chains in Bi2MO4Cl (M = Bi, La). The Sb substitution in Bi2-x Sb x YO4Cl elevates the valence band maximum, resulting in a minimized bandgap of 2.1 eV around x = 0.6, which is significantly smaller than those typically observed in oxychlorides, allowing the absorption of a wider range of light wavelengths. Given the predominance of materials with a double fluorite layer in previous studies, our findings highlight the potential of compounds endowed with triple or thicker fluorite layers as a novel platform for band engineering that utilizes biaxial strain from the inner layer(s) to finely control their electronic structures.

4.
Chem Sci ; 15(30): 11719-11736, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092126

RESUMEN

The band structure offers fundamental information on electronic properties of solid state materials, and hence it is crucial for solid state chemists to understand and predict the relationship between the band structure and electronic structure to design chemical and physical properties. Here, we review layered oxyhalide photocatalysts for water splitting with a particular emphasis on band structure control. The unique feature of these materials including Sillén and Sillén-Aurivillius oxyhalides lies in their band structure including a remarkably high oxygen band, allowing them to exhibit both visible light responsiveness and photocatalytic stability unlike conventional mixed anion compounds, which show good light absorption, but frequently encounter stability issues. For band structure control, simple strategies effective in mixed-anion compounds, such as anion substitution forming high energy p orbitals in accordance with its electronegativity, is not effective for oxyhalides with high oxygen bands. We overview key concepts for band structure control of oxyhalide photocatalysts such as lone-pair interactions and electrostatic interactions. The control of the band structure of inorganic solid materials is a crucial challenge across a wide range of materials chemistry fields, and the insights obtained by the development of oxyhalide photocatalysts are expected to provide knowledge for diverse materials chemistry.

5.
Cureus ; 16(5): e60546, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38887326

RESUMEN

Hypertrophic pachymeningitis (HP) is a rare inflammatory disease of the central nervous system. It typically manifests in the cranium; cases involving the spinal cord are rare (8.6%). This report includes two cases of spinal HP encountered among 666 spinal operative cases. The purpose of this study is to present the initial imaging findings, final diagnosis, and course of treatment in these two cases of spinal HP and to present the possible risk of misdiagnosis with a literature review. In case 1, a 69-year-old female presented with back pain. The initial radiological diagnosis with magnetic resonance imaging (MRI) was a meningioma. However, her blood test showed a mild elevation of C-reactive protein level (3.16 mg/dL), with positive IgG4 and myeloperoxidase anti-neutrophil cytoplasmic antibody results, suggesting an autoimmune disease. We performed a biopsy of the thickened dura and an expansive duraplasty. Serological and pathological diagnosis suggested IgG4-related HP. In case 2, a 67-year-old male presented with bilateral thigh pain. MRI revealed a mass resembling a disc hernia at the L2/3 intervertebral level. The mass was surgically removed. Pathological examination and cerebrospinal fluid analysis confirmed the diagnosis of HP associated with IgG4-related disease. In both cases, immunosuppressive therapy was administered, and follow-up MRI scans revealed the disappearance of the mass. The study concludes that a spinal HP can potentially be misdiagnosed when its images resemble those of tumors or disc hernias owing to its rarity.

6.
Inorg Chem ; 63(22): 10207-10220, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767574

RESUMEN

We prepared polyoxomolybdates with methylammonium countercations from methylammonium monomolybdate, (CH3NH3)2[MoO4], through two dehydrative condensation methods, acidifying in the aqueous solution and solid-state heating. Discrete (CH3NH3)10[Mo36O112(OH)2(H2O)14], polymeric ((CH3NH3)8[Mo36O112(H2O)14])n, and polymeric ((CH3NH3)4[γ-Mo8O26])n were selectively isolated via pH control of the aqueous (CH3NH3)2[MoO4] solution. The H2SO4-acidified solution of pH < 1 produced "sulfonated α-MoO3", polymeric ((CH3NH3)2[(MoO3)3(SO4)])n. The solid-state heating of (CH3NH3)2[MoO4] in air released methylamine and water to produce several methylammonium polyoxomolybdates in the sequence of discrete (CH3NH3)8[Mo7O24-MoO4], discrete (CH3NH3)6[Mo7O24], discrete (CH3NH3)8[Mo10O34], and polymeric ((CH3NH3)4[γ-Mo8O26])n, before their transformation into molybdenum oxides such as hexagonal-MoO3 and α-MoO3. Notably, some of their polyoxomolybdate structures were different from polyoxomolybdates produced from ammonium molybdates, such as (NH4)2[MoO4] or (NH4)6[Mo7O24], indicating that countercation affected the polyoxomolybdate structure. Moreover, among the tested polyoxomolybdates, (CH3NH3)6[Mo7O24] was the best negative staining reagent for the observation of the SARS-CoV-2 virus using transmission electron microscopy.

7.
J Med Invest ; 71(1.2): 179-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735718

RESUMEN

Osteoporotic vertebral fracture (OVF) is common in the elderly population. In this report, we describe a case with radiculopathy due to foraminal stenosis caused by OVF in a very elderly patient that was treated successfully by full-endoscopic foraminotomy under local anesthesia. The patient was an 89-year-old woman who presented with a chief complaint of left leg pain for 5 years. She visited a couple of hospitals and finally consulted us to determine the exact cause of the pain. Computed tomography scans were obtained and selective nerve root block at L3 was performed. The diagnosis was radiculopathy at L3 due to foraminal stenosis following OVF. The patient had severe heart disease, so we decided to avoid surgery under general anesthesia and planned full-endoscopic spine surgery under local anesthesia. We performed transforaminal full-endoscopic lumbar foraminotomy at L3-L4 to decompress the L3 nerve root. The leg pain disappeared completely immediately after surgery. Postoperative computed tomography confirmed appropriate bone resection. The leg pain did not recur during a year of postoperative follow-up. OVF may cause lumbar radiculopathy as a result of foraminal stenosis, and transforaminal full-endoscopic lumbar foraminotomy under local anesthesia would be the best option in an elderly patient with poor general condition. J. Med. Invest. 71 : 179-183, February, 2024.


Asunto(s)
Anestesia Local , Descompresión Quirúrgica , Endoscopía , Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Estenosis Espinal , Humanos , Femenino , Anciano de 80 o más Años , Fracturas de la Columna Vertebral/cirugía , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/etiología , Estenosis Espinal/cirugía , Estenosis Espinal/diagnóstico por imagen , Descompresión Quirúrgica/métodos , Endoscopía/métodos , Fracturas Osteoporóticas/cirugía , Fracturas Osteoporóticas/diagnóstico por imagen , Vértebras Lumbares/cirugía , Vértebras Lumbares/diagnóstico por imagen , Radiculopatía/cirugía , Radiculopatía/etiología
8.
J Am Chem Soc ; 146(17): 11694-11701, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631694

RESUMEN

Perovskite oxyhydrides have attracted recent attention due to their intriguing properties such as ionic conductivity and catalysis, but their repertoire is still restricted compared to perovskite oxynitrides and oxyfluorides. Historically, perovskite oxyhydrides have been prepared mostly by topochemical reactions and high-pressure (HP) reactions, while in this study, we employed a mechanochemical (MC) approach, which enables the synthesis of a series of ABO2H-type oxyhydrides, including those with the tolerance factor (t) much smaller than 1 (e.g., SrScO2H with t = 0.936) which cannot be obtained by HP synthesis. The octahedral tilting, often present in perovskite oxides, does not occur, suggesting that the lack of π-symmetry of the H 1s orbital and the large polarization destabilize tilted low-symmetry structures. Interestingly, SrCrO2H (t = 0.997), previously reported with the HP method, was not achieved with the MC method. A comparative analysis revealed a correlation between the feasibility of MC reactions and the (calculated) shear modulus of the starting reagents (binary oxides and hydrides). Notably, this indicator is not exclusive to oxyhydride perovskites but extends to oxide perovskites (SrMO3). This study demonstrates that MC synthesis offers unique opportunities not only to expand the compositional space in oxyhydrides in various structural types but also to provide a guide for the choice of starting materials for the synthesis of other compounds.

9.
J Am Chem Soc ; 146(12): 8320-8326, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38489763

RESUMEN

One-dimensional (1D) Heisenberg antiferromagnets are of great interest due to their intriguing quantum phenomena. However, the experimental realization of such systems with large spin S remains challenging because even weak interchain interactions induce long-range ordering. In this study, we present an ideal 1D S = 5/2 spin chain antiferromagnet achieved through a multistep topochemical route involving dehydration and rehydration. By desorbing three water molecules from (2,2'-bpy)FeF3(H2O)·2H2O (2,2'-bpy = 2,2'-bipyridyl) at 150 °C and then intercalating two water molecules at room temperature (giving (2,2'-bpy)FeF3·2H2O 1), the initially isolated FeF3ON2 octahedra combine to form corner-sharing FeF4N2 octahedral chains, which are effectively separated by organic and added water molecules. Mössbauer spectroscopy reveals significant dynamical fluctuations down to 2.7 K, despite the presence of strong intrachain interactions. Moreover, results from electron spin resonance (ESR) and heat capacity measurements indicate the absence of long-range order down to 0.5 K. This controlled topochemical dehydration/rehydration approach is further extended to (2,2'-bpy)CrF3·2H2O with S = 3/2 1D chains, thus opening the possibility of obtaining other low-dimensional spin lattices.

10.
Angew Chem Int Ed Engl ; 63(15): e202401779, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38363076

RESUMEN

The Li3MX6 compounds (M=Sc, Y, In; X=Cl, Br) are known as promising ionic conductors due to their compatibility with typical metal oxide cathode materials. In this study, we have successfully synthesized γ-Li3ScCl6 using high pressure for the first time in this family. Structural analysis revealed that the high-pressure polymorph crystallizes in the polar and chiral space group P63mc with hexagonal close-packing (hcp) of anions, unlike the ambient-pressure α-Li3ScCl6 and its spinel analog with cubic closed packing (ccp) of anions. Investigation of the known Li3MX6 family further revealed that the cation/anion radius ratio, rM/rX, is the factor that determines which anion sublattice is formed and that in γ-Li3ScCl6, the difference in compressibility between Sc and Cl exceeds the ccp rM/rX threshold under pressure, enabling the ccp-to-hcp conversion. Electrochemical tests of γ-Li3ScCl6 demonstrate improved electrochemical reduction stability. These findings open up new avenues and design principles for lithium solid electrolytes, enabling routes for materials exploration and tuning electrochemical stability without compositional changes or the use of coatings.

11.
J Am Chem Soc ; 146(6): 3844-3853, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38193701

RESUMEN

Developing electrochemical high-energy storage systems is of crucial importance toward a green and sustainable energy supply. A promising candidate is fluoride-ion batteries (FIBs), which can deliver a much higher volumetric energy density than lithium-ion batteries. However, typical metal fluoride cathodes with conversion-type reactions cause a low-rate capability. Recently, layered perovskite oxides and oxyfluorides, such as LaSrMnO4 and Sr3Fe2O5F2, have been reported to exhibit relatively high rate performance and cycle stability compared to typical metal fluoride cathodes with conversion-type reactions, but their discharge capacities (∼118 mA h/g) are lower than those of typical cathodes used in lithium-ion batteries. Here, we show that double-layered perovskite oxyfluoride La1.2Sr1.8Mn2O7-δF2 exhibits (de) intercalation of two fluoride ions to rock-salt slabs and further (de) intercalation of excess fluoride ions to the perovskite layer, leading to a reversible capacity of 200 mA h/g. The additional fluoride-ion intercalation leads to the formation of O-O bond in the structure for charge compensation (i.e., anion redox). These results highlight the layered perovskite oxyfluorides as a new class of active materials for the construction of high-performance FIBs.

12.
Nat Mater ; 23(2): 182-188, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182809

RESUMEN

Multiferroic materials, particularly those possessing simultaneous electric and magnetic orders, offer a platform for design technologies and to study modern physics. Despite the substantial progress and evolution of multiferroics, one priority in the field remains to be the discovery of unexplored materials, especially those offering different mechanisms for controlling electric and magnetic orders1. Here we demonstrate the simultaneous thermal control of electric and magnetic polarizations in quasi-two-dimensional halides (K,Rb)3Mn2Cl7, arising from a polar-antipolar transition, as evidenced using both X-ray and neutron powder diffraction data. Our density functional theory calculations indicate a possible polarization-switching path including a strong coupling between the electric and magnetic orders in our halide materials, suggesting a magnetoelectric coupling and a situation not realized in oxide analogues. We expect our findings to stimulate the exploration of non-oxide multiferroics and magnetoelectrics to open access to alternative mechanisms, beyond conventional electric and magnetic control, for coupling ferroic orders.

13.
Nat Commun ; 15(1): 442, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200029

RESUMEN

In quantum magnetic materials, ordered phases induced by an applied magnetic field can be described as the Bose-Einstein condensation (BEC) of magnon excitations. In the strongly frustrated system SrCu2(BO3)2, no clear magnon BEC could be observed, pointing to an alternative mechanism, but the high fields required to probe this physics have remained a barrier to detailed investigation. Here we exploit the first purpose-built high-field neutron scattering facility to measure the spin excitations of SrCu2(BO3)2 up to 25.9 T and use cylinder matrix-product-states (MPS) calculations to reproduce the experimental spectra with high accuracy. Multiple unconventional features point to a condensation of S = 2 bound states into a spin-nematic phase, including the gradients of the one-magnon branches and the persistence of a one-magnon spin gap. This gap reflects a direct analogy with superconductivity, suggesting that the spin-nematic phase in SrCu2(BO3)2 is best understood as a condensate of bosonic Cooper pairs.

14.
Sci Adv ; 9(47): eadi0138, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37992171

RESUMEN

Thin-film ferroelectrics have been pursued for capacitive and nonvolatile memory devices. They rely on polarizations that are oriented in an out-of-plane direction to facilitate integration and addressability with complementary metal-oxide semiconductor architectures. The internal depolarization field, however, formed by surface charges can suppress the out-of-plane polarization in ultrathin ferroelectric films that could otherwise exhibit lower coercive fields and operate with lower power. Here, we unveil stabilization of a polar longitudinal optical (LO) mode in the n = 2 Ruddlesden-Popper family that produces out-of-plane ferroelectricity, persists under open-circuit boundary conditions, and is distinct from hyperferroelectricity. Our first-principles calculations show the stabilization of the LO mode is ubiquitous in chalcogenides and halides and relies on anharmonic trilinear mode coupling. We further show that the out-of-plane ferroelectricity can be predicted with a crystallographic tolerance factor, and we use these insights to design a room-temperature multiferroic with strong magnetoelectric coupling suitable for magneto-electric spin-orbit transistors.

15.
J Am Chem Soc ; 145(40): 21807-21816, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37770040

RESUMEN

Perovskite oxides ABO3 continue to be a major focus in materials science. Of particular interest is the interplay between A and B cations as exemplified by intersite charge transfer (ICT), which causes novel phenomena including negative thermal expansion and metal-insulator transition. However, the ICT properties were achieved and optimized by cationic substitution or ordering. Here we demonstrate an anionic approach to induce ICT using an oxyhydride perovskite, EuVO2H, which has alternating layers of EuH and VO2. A bulk EuVO2H behaves as a ferromagnetic insulator with a relatively high transition temperature (TC) of 10 K. However, the application of external pressure to the EuIIVIIIO2H bulk or compressive strain from the substrate in the thin films induces ICT from the EuIIH layer to the VIIIO2 layer due to the extended empty V dxy orbital. The ICT phenomenon causes the VO2 layer to become conductive, leading to an increase in TC that is dependent on the number of carriers in the dxy orbitals (up to a factor of 4 for 10 nm thin films). In addition, a large perpendicular magnetic anisotropy appears with the ICT for the films of <100 nm, which is unprecedented in materials with orbital-free Eu2+, opening new perspectives for applications. The present results provide opportunities for the acquisition of novel functions by alternating transition metal/rare earth layers with heteroanions.

16.
Dalton Trans ; 52(26): 9026-9031, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37334563

RESUMEN

Unlike perovskite oxides, antiperovskites M3HCh and M3FCh (M = Li, Na; Ch = S, Se, Te) mostly retain their ideal cubic structure over a wide range of compositions owing to anionic size flexibility and low-energy phonon modes that promote their ionic conductivity. In this study, we show the synthesis of potassium-based antiperovskites K3HTe and K3FTe and discuss the structural features in comparison with lithium and sodium analogues. It is shown experimentally and theoretically that both compounds maintain a cubic symmetry and can be prepared at ambient pressure, in contrast to most of the reported M3HCh and M3FCh which require high pressure synthesis. A systematic comparison of a series of cubic M3HTe and M3FTe (M = Li, Na, K) revealed that telluride anions contract in the order of K, Na, Li, with a pronounced contraction in the Li system. This result can be understood in terms of the difference in charge density of alkali metal ions as well as the size flexibility of Ch anions, contributing to the stability of the cubic symmetry.

17.
ACS Org Inorg Au ; 3(3): 158-170, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37303501

RESUMEN

Oxychalcogenides are emerging as promising alternative candidates for a variety of applications including for energy. Only few phases among them show the presence of Q-Q bonds (Q = chalcogenide anion) while they drastically alter the electronic structure and allow further structural flexibility. Four original oxy(poly)chalcogenide compounds in the system Ba-V-Q-O (Q = S, Se) were synthesized, characterized, and studied using density functional theory (DFT). The new structure type found for Ba7V2O2S13, which can be written as Ba7S(VS3O)2(S2)3, was substituted to yield three selenide derivatives Ba7V2O2S9.304Se3.696, Ba7V2O2S7.15Se5.85, and Ba7V2O2S6.85Se6.15. They represent original multiple-anion lattices and first members in the system Ba-V-Se-S-O. They exhibit in the first layer heteroleptic tetrahedra V5+S3O and isolated Q2- anions and in the second layer dichalcogenide pairs (Q2)2- with Q = S or Se. Selenide derivatives were attempted by targeting the selective substitution of isolated Q2- or (Q2)2- (in distinct layers) or both by selenide, but it systematically led to concomitant and partial substitution of both sites. A DFT meta-GGA study showed that selective substitution yields local constraints due to rigid VO3S and pairs. Experimentally, incorporation of selenide in both layers avoids geometrical mismatch and constraints. In such systems, we show that the interplay between the O/S anionic ratio around V5+, together with the presence/nature of the dichalcogenides (Q2)2- and isolated Q2-, impacts in unique manners the band gap and provides a rich background to tune the band gap and the symmetry.

18.
Inorg Chem ; 62(20): 7993-8000, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37159274

RESUMEN

While cation order-disorder transitions have been extensively investigated because of their decisive impact on chemical and physical properties, only few anion order-disorder transitions are known. Here, we show that Sr2CuO2Cl2-type layered perovskite Sr2LiHOCl2 exhibits a pressure-induced H-/O2- order-disorder transition. When synthesized at ambient and low pressures (≤2 GPa), Sr2LiHOCl2 is isostructural to orthorhombic Eu2LiHOCl2 (Cmcm) with a H-/O2- order at the equatorial sites. However, applying a higher pressure (5 GPa) during synthesis causes the equatorial anions to be disordered, leading to a tetragonal symmetry (I4/mmm) with a loss of the superstructure. The structural analysis revealed that, in the ambient pressure phase, HLi2Sr4 and OLi2Sr4 octahedra have distinct sizes to stabilize otherwise underbonded oxide ions, which is less important at the higher pressure. Anion-disordered Sr2LiHOBr2 and Ba2LiHOCl2 were also obtained at 5 GPa. Given the abundant layer-type anion order in perovskite-based oxyhydrides (e.g., La2LiHO3), the inclusion of additional anions (e.g., chloride) expands the frontiers of anion ordering patterns and their distribution control with the benefit of improving ionic conduction in solids.

19.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37125859

RESUMEN

We report an experimental setup for simultaneously measuring specific heat and thermal conductivity in feedback-controlled pulsed magnetic fields of 50 ms duration at cryogenic temperatures. A stabilized magnetic field pulse obtained by the feedback control, which dramatically improves the thermal stability of the setup and sample, is used in combination with the flash method to obtain absolute values of thermal properties up to 37.2 T in the 22-16 K temperature range. We describe the experimental setup and demonstrate the performance of the present method with measurements on single-crystal samples of the geometrically frustrated quantum spin-dimer system SrCu2(BO3)2. Our proof-of-principle results show excellent agreement with data taken using a standard steady-state method, confirming the validity and convenience of the present approach.

20.
Angew Chem Int Ed Engl ; 62(30): e202301416, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37070794

RESUMEN

Mixed-anion compounds have attracted growing attentions, but their synthesis is challenging, making a rational search desirable. Here, we explored LaF3 -LaX3 (X=Cl, Br, I) system using ab initio structure searches based on evolutionary algorithms, and predicted LaF2 X and LaFX2 (X=Br, I), which are respectively isostructural with LaHBr2 and YH2 I, consisting of layered La-F blocks with single and double ordered honeycomb lattices, separated by van der Waals gaps. We successfully synthesized these compounds: LaF2 Br and LaFI2 crystallize in the predicted structure, while LaF2 I is similar to the predicted one but with different layer stacking. LaF2 I exhibits fluoride ion conductivity comparable to that of non-doped LaF3 , and has the potential to show better ionic conductivity upon appropriate doping, given the theoretically lower diffusion energy barrier and the presence of soft iodine anions. This study shows the structure prediction using evolutionary algorithms will accelerate the discovery of mixed-anion compounds in future, in particular those with an ordered anion arrangement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA