Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Pharmacol Res ; 177: 106119, 2022 03.
Article En | MEDLINE | ID: mdl-35131483

Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.


Cardiomyopathies , Heart Failure , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Cardiomyopathies/metabolism , Homeostasis , Humans , Myocardial Contraction , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum
2.
Biology (Basel) ; 11(2)2022 Feb 12.
Article En | MEDLINE | ID: mdl-35205167

Cardiovascular diseases (CVDs) and cancer continue to be the primary cause of mortality worldwide and their pathomechanisms are a complex and multifactorial process. Insufficient oxygen availability (hypoxia) plays critical roles in the pathogenesis of both CVDs and cancer diseases, and hypoxia-inducible factor 1 (HIF-1), the main sensor of hypoxia, acts as a central regulator of multiple target genes in the human body. Accumulating evidence demonstrates that mitochondria are the major target of hypoxic injury, the most common source of reactive oxygen species during hypoxia and key elements for inflammation regulation during the development of both CVDs and cancer. Taken together, observations propose that hypoxia, mitochondrial abnormality, oxidative stress, inflammation in CVDs, and cancer are closely linked. Based upon these facts, this review aims to deeply discuss these intimate relationships and to summarize current significant findings corroborating the molecular mechanisms and potential therapies involved in hypoxia and mitochondrial dysfunction in CVDs and cancer.

3.
Int Rev Cell Mol Biol ; 362: 111-140, 2021.
Article En | MEDLINE | ID: mdl-34253293

Hematopoiesis is based on the existence of hematopoietic stem cells (HSC) with the capacity to self-proliferate and self-renew or to differentiate into specialized cells. The hematopoietic niche is the essential microenvironment where stem cells reside and integrate various stimuli to determine their fate. Recent studies have identified niche containing high level of calcium (Ca2+) suggesting that HSCs are sensitive to Ca2+. This is a highly versatile and ubiquitous second messenger that regulates a wide variety of cellular functions. Advanced methods for measuring its concentrations, genetic experiments, cell fate tracing data, single-cell imaging, and transcriptomics studies provide information into its specific roles to integrate signaling into an array of mechanisms that determine HSC identity, lineage potential, maintenance, and self-renewal. Accumulating and contrasting evidence, are revealing Ca2+ as a previously unacknowledged feature of HSC, involved in functional maintenance, by regulating multiple actors including transcription and epigenetic factors, Ca2+-dependent kinases and mitochondrial physiology. Mitochondria are significant participants in HSC functions and their responsiveness to cellular demands is controlled to a significant extent via Ca2+ signals. Recent reports indicate that mitochondrial Ca2+ uptake also controls HSC fate. These observations reveal a physiological feature of hematopoietic stem cells that can be harnessed to improve HSC-related disease. In this review, we discuss the current knowledge Ca2+ in hematopoietic stem cell focusing on its potential involvement in proliferation, self-renewal and maintenance of HSC and discuss future research directions.


Calcium/metabolism , Cell Differentiation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Homeostasis , Mitochondria/metabolism , Animals , Hematopoiesis , Humans
4.
Biomolecules ; 10(7)2020 07 04.
Article En | MEDLINE | ID: mdl-32635556

Mitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate outer-mitochondrial-membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade and caspase-independent cell-death mechanisms. The induction of MPT is mostly dependent on mitochondrial reactive oxygen species (ROS) and Ca2+, but is also dependent on the metabolic stage of the affected cell and signaling events. Therefore, since its discovery in the late 1970s, the role of MPT in human pathology has been heavily investigated. Here, we summarize the most significant findings corroborating a role for MPT in the etiology of a spectrum of human diseases, including diseases characterized by acute or chronic loss of adult cells and those characterized by neoplastic initiation.


Calcium/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Reactive Oxygen Species/metabolism , Cell Death , Humans , Membrane Potential, Mitochondrial , Signal Transduction
...