Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0299757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028721

RESUMEN

Acute and chronic inflammation are common in patients with end-stage kidney disease (ESKD). So, the adsorption of pro-inflammatory cytokines by the hollow fiber of the dialysis membrane has been expected to modify the inflammatory dysregulation in ESKD patients. However, it remains to be determined in detail what molecules of fiber materials can preferably adsorb proteins from the circulating circuit. We aimed this study to analyze directly the adsorbed proteins in the polymethyl methacrylate (PMMA) and polyethersulfone (PES) membranes in patients on predilution online hemodiafiltration (OL-HDF). To compare the adsorbed proteins in the PMMA and PES hemodiafilters membrane, we initially performed predilution OL-HDF using the PES (MFX-25Seco) membrane while then switched to the PMMA (PMF™-A) membrane under the same condition in three patients. We extracted proteins from the collected hemodiafilters by extraction, then SDS-PAGE of the extracted sample, protein isolation, in-gel tryptic digestion, and nano-LC MS/MS analyses. The concentrations of adsorbed proteins from the PMMA and PES membrane extracts were 35.6±7.9 µg/µL and 26.1±9.2 µg/µL. SDS-PAGE analysis revealed distinct variations of adsorbed proteins mainly in the molecular weight between 10 to 25 kDa. By tryptic gel digestion and mass spectrometric analysis, the PMMA membrane exhibited higher adsorptions of ß2 microglobulin, dermcidin, retinol-binding protein-4, and lambda-1 light chain than those from the PES membrane. In contrast, amyloid A-1 protein was adsorbed more potently in the PES membrane. Western blot analyses revealed that the PMMA membrane adsorbed interleukin-6 (IL-6) approximately 5 to 118 times compared to the PES membrane. These findings suggest that PMMA-based OL-HDF therapy may be useful in controlling inflammatory status in ESKD patients.


Asunto(s)
Hemodiafiltración , Membranas Artificiales , Polímeros , Polimetil Metacrilato , Sulfonas , Humanos , Hemodiafiltración/métodos , Hemodiafiltración/instrumentación , Polimetil Metacrilato/química , Adsorción , Sulfonas/química , Polímeros/química , Masculino , Proteínas Sanguíneas/química , Proteínas Sanguíneas/análisis , Persona de Mediana Edad , Fallo Renal Crónico/terapia , Fallo Renal Crónico/sangre , Femenino , Anciano , Espectrometría de Masas en Tándem/métodos
2.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063212

RESUMEN

Mass spectrometry imaging (MSI) is essential for visualizing drug distribution, metabolites, and significant biomolecules in pharmacokinetic studies. This study mainly focuses on imipramine, a tricyclic antidepressant that affects endogenous metabolite concentrations. The aim was to use atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-MSI combined with different dimensionality reduction methods to examine the distribution and impact of imipramine on endogenous metabolites in the brains of treated wild-type mice. Brain sections from both control and imipramine-treated mice underwent AP-MALDI-MSI. Dimensionality reduction methods, including principal component analysis, multivariate curve resolution, and sparse autoencoder (SAE), were employed to extract valuable information from the MSI data. Only the SAE method identified phosphorylcholine (ChoP) as a potential marker distinguishing between the control and treated mice brains. Additionally, a significant decrease in ChoP accumulation was observed in the cerebellum, hypothalamus, thalamus, midbrain, caudate putamen, and striatum ventral regions of the treated mice brains. The application of dimensionality reduction methods, particularly the SAE method, to the AP-MALDI-MSI data is a novel approach for peak selection in AP-MALDI-MSI data analysis. This study revealed a significant decrease in ChoP in imipramine-treated mice brains.


Asunto(s)
Encéfalo , Imipramina , Fosforilcolina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Imipramina/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fosforilcolina/metabolismo , Fosforilcolina/análogos & derivados , Masculino , Antidepresivos Tricíclicos/farmacocinética , Antidepresivos Tricíclicos/farmacología , Antidepresivos Tricíclicos/metabolismo , Ratones Endogámicos C57BL , Análisis de Componente Principal
3.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000460

RESUMEN

Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark of related neurodegenerative diseases such as Parkinson's disease (PD), can translocate between cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) and thereby mediates intercellular communication. Our recent studies have shown that α-syn interacts with UBL3 and that this interaction is downregulated after silencing microsomal glutathione S-transferase 3 (MGST3). However, how MGST3 regulates the interaction of α-syn and UBL3 remains unclear. In the present study, we further explored this by overexpressing MGST3. In the split Gaussia luciferase complementation assay, we found that the interaction between α-syn and UBL3 was upregulated by MGST3. While Western blot and RT-qPCR analyses showed that silencing or overexpression of MGST3 did not significantly alter the expression of α-syn and UBL3, the immunocytochemical staining analysis indicated that MGST3 increased the co-localization of α-syn and UBL3. We suggested roles for the anti-oxidative stress function of MGST3 and found that the effect of MGST3 overexpression on the interaction between α-syn with UBL3 was significantly rescued under excess oxidative stress and promoted intracellular α-syn to extracellular transport. In conclusion, our results demonstrate that MGST3 upregulates the interaction between α-syn with UBL3 and promotes the interaction to translocate intracellular α-syn to the extracellular. Overall, our findings provide new insights and ideas for promoting the modulation of UBL3 as a therapeutic agent for the treatment of synucleinopathy-associated neurodegenerative diseases.


Asunto(s)
Glutatión Transferasa , Estrés Oxidativo , Ubiquitinas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Regulación hacia Arriba , Transporte de Proteínas , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Unión Proteica
4.
J Am Soc Mass Spectrom ; 35(6): 1227-1236, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38778699

RESUMEN

Cholesterol is a primary lipid molecule in the brain that contains one-fourth of the total body cholesterol. Abnormal cholesterol homeostasis is associated with neurodegenerative disorders. Mass spectrometry imaging (MSI) technique is a powerful tool for studying lipidomics and metabolomics. Among the MSI techniques, desorption electrospray ionization-MSI (DESI-MSI) has been used advantageously to study brain lipidomics due to its soft and ambient ionization nature. However, brain cholesterol is poorly ionized. To this end, we have developed a new method for detecting brain cholesterol by DESI-MSI using low-temperature plasma (LTP) pretreatment as an ionization enhancement. In this method, the brain sections were treated with LTP for 1 and 2 min prior to DESI-MSI analyses. Interestingly, the MS signal intensity of cholesterol (at m/z 369.35 [M + H - H2O]+) was more than 2-fold higher in the 1 min LTP-treated brain section compared to the untreated section. In addition, we detected cholesterol, more specifically excluding isomers by targeted-DESI-MSI in multiple reaction monitoring (MRM) mode and similar results were observed: the signal intensity of each cholesterol transition (m/z 369.4 → 95.1, 109.1, 135.1, 147.1, and 161.1) was increased by more than 2-fold due to 1 min LTP treatment. Cholesterol showed characteristic distributions in the fiber tract region, including the corpus callosum and anterior commissure, anterior part of the brain where LTP markedly (p < 0.001) enhanced the cholesterol intensity. In addition, the distributions of some unknown analytes were exclusively detected in the LTP-treated section. Our study revealed LTP pretreatment as a potential strategy to ionize molecules that show poor ionization efficiency in the MSI technique.


Asunto(s)
Química Encefálica , Colesterol , Espectrometría de Masa por Ionización de Electrospray , Colesterol/análisis , Colesterol/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Frío , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Masculino , Ratones , Gases em Plasma/química , Lipidómica/métodos
5.
Lipids Health Dis ; 23(1): 154, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796445

RESUMEN

Cancer prognosis remains a critical clinical challenge. Lipidomic analysis via mass spectrometry (MS) offers the potential for objective prognostic prediction, leveraging the distinct lipid profiles of cancer patient-derived specimens. This review aims to systematically summarize the application of MS-based lipidomic analysis in prognostic prediction for cancer patients. Our systematic review summarized 38 studies from the past decade that attempted prognostic prediction of cancer patients through lipidomics. Commonly analyzed cancers included colorectal, prostate, and breast cancers. Liquid (serum and urine) and tissue samples were equally used, with liquid chromatography-tandem MS being the most common analytical platform. The most frequently evaluated prognostic outcomes were overall survival, stage, and recurrence. Thirty-eight lipid markers (including phosphatidylcholine, ceramide, triglyceride, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, diacylglycerol, phosphatidic acid, phosphatidylserine, lysophosphatidylethanolamine, lysophosphatidic acid, dihydroceramide, prostaglandin, sphingosine-1-phosphate, phosphatidylinosito, fatty acid, glucosylceramide and lactosylceramide) were identified as prognostic factors, demonstrating potential for clinical application. In conclusion, the potential for developing lipidomics in cancer prognostic prediction was demonstrated. However, the field is still nascent, necessitating future studies for validating and establishing lipid markers as reliable prognostic tools in clinical practice.


Asunto(s)
Lipidómica , Neoplasias , Humanos , Pronóstico , Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/mortalidad , Lipidómica/métodos , Biomarcadores de Tumor/metabolismo , Espectrometría de Masas/métodos , Femenino , Lípidos/sangre , Lípidos/análisis , Masculino , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/diagnóstico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/diagnóstico , Lisofosfolípidos/metabolismo , Lisofosfolípidos/análisis , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad
6.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732055

RESUMEN

Knowledge of gender-specific drug distributions in different organs are of great importance for personalized medicine and reducing toxicity. However, such drug distributions have not been well studied. In this study, we investigated potential differences in the distribution of imipramine and chloroquine, as well as their metabolites, between male and female kidneys. Kidneys were collected from mice treated with imipramine or chloroquine and then subjected to atmospheric pressure matrix-assisted laser desorption ionization-mass spectrometry imaging (AP-MALDI-MSI). We observed differential distributions of the drugs and their metabolites between male and female kidneys. Imipramine showed prominent distributions in the cortex and medulla in male and female kidneys, respectively. Desipramine, one of the metabolites of imipramine, showed significantly higher (*** p < 0.001) distributions in the medulla of the male kidney compared to that of the female kidney. Chloroquine and its metabolites were accumulated in the pelvis of both male and female kidneys. Interestingly, they showed a characteristic distribution in the medulla of the female kidney, while almost no distributions were observed in the same areas of the male kidney. For the first time, our study revealed that the distributions of imipramine, chloroquine, and their metabolites were different in male and female kidneys.


Asunto(s)
Cloroquina , Imipramina , Riñón , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Imipramina/metabolismo , Masculino , Cloroquina/metabolismo , Cloroquina/farmacología , Femenino , Ratones , Riñón/metabolismo , Factores Sexuales , Caracteres Sexuales , Distribución Tisular
7.
Phys Rev E ; 109(1-1): 014402, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366427

RESUMEN

Biological tissue consists of various molecules. Instead of focusing on a particular molecule, we consider the Shannon entropy which is calculated from the abundance of different molecules at each spot in the tissue. The spatial distribution of the Shannon entropy is of interest. In this paper, we first obtain the heat map of perplexity, whose logarithm is the entropy. To characterize the spatial variety of molecules, we propose a scalar k that is concerned with the coarse-graining of the perplexity heat map. To verify the usefulness of the number, experiments with mass spectrometry imaging were performed for mouse kidneys. We found that k has large values in the renal pelvis area, cortex area, veins, and arteries in the mouse kidney, whereas fractal dimensions fail to distinguish those regions.


Asunto(s)
Corteza Cerebral , Fractales , Animales , Ratones , Entropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA