Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 101
1.
Nat Med ; 30(5): 1448-1460, 2024 May.
Article En | MEDLINE | ID: mdl-38760586

In a previous study, heart xenografts from 10-gene-edited pigs transplanted into two human decedents did not show evidence of acute-onset cellular- or antibody-mediated rejection. Here, to better understand the detailed molecular landscape following xenotransplantation, we carried out bulk and single-cell transcriptomics, lipidomics, proteomics and metabolomics on blood samples obtained from the transplanted decedents every 6 h, as well as histological and transcriptomic tissue profiling. We observed substantial early immune responses in peripheral blood mononuclear cells and xenograft tissue obtained from decedent 1 (male), associated with downstream T cell and natural killer cell activity. Longitudinal analyses indicated the presence of ischemia reperfusion injury, exacerbated by inadequate immunosuppression of T cells, consistent with previous findings of perioperative cardiac xenograft dysfunction in pig-to-nonhuman primate studies. Moreover, at 42 h after transplantation, substantial alterations in cellular metabolism and liver-damage pathways occurred, correlating with profound organ-wide physiological dysfunction. By contrast, relatively minor changes in RNA, protein, lipid and metabolism profiles were observed in decedent 2 (female) as compared to decedent 1. Overall, these multi-omics analyses delineate distinct responses to cardiac xenotransplantation in the two human decedents and reveal new insights into early molecular and immune responses after xenotransplantation. These findings may aid in the development of targeted therapeutic approaches to limit ischemia reperfusion injury-related phenotypes and improve outcomes.


Heart Transplantation , Heterografts , Transplantation, Heterologous , Humans , Animals , Swine , Male , Female , Graft Rejection/immunology , Graft Rejection/genetics , Proteomics , Metabolomics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Transcriptome , Gene Expression Profiling , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lipidomics , Reperfusion Injury/immunology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Multiomics
2.
Cell Rep Med ; 5(5): 101556, 2024 May 21.
Article En | MEDLINE | ID: mdl-38776872

Cardiovascular disease plays a central role in the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart failure, and sudden death. Here, we dissect with single-nuclei RNA sequencing (snRNA-seq) and spatial transcriptomics the gene expression changes in the human ex vivo right atrial tissue and pericardial fluid in ischemic heart disease, myocardial infarction, and ischemic and non-ischemic heart failure using asymptomatic patients with valvular disease who undergo preventive surgery as the control group. We reveal substantial differences in disease-associated gene expression in all cell types, collectively suggesting inflammatory microvascular dysfunction and changes in the right atrial tissue composition as the valvular and vascular diseases progress into heart failure. The data collectively suggest that investigation of human cardiovascular disease should expand to all functionally important parts of the heart, which may help us to identify mechanisms promoting more severe types of the disease.


Heart Atria , Microvessels , Myocardial Ischemia , Transcriptome , Humans , Heart Atria/pathology , Heart Atria/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocardial Ischemia/metabolism , Transcriptome/genetics , Microvessels/pathology , Inflammation/pathology , Inflammation/genetics , Male , Female , Middle Aged , Aged , Gene Expression Regulation
3.
FEBS Lett ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683017

Genome-wide association studies (GWAS) significantly advanced our understanding of the genetic underpinnings of diseases. However, challenges persist, particularly in interpreting non-coding variants in linkage disequilibrium that affect genes in disease-relevant cells. Addressing key obstacles-identifying causal variants, uncovering target genes, and understanding their network impact-is crucial. This graphical review navigates advanced techniques to fully leverage GWAS for future therapeutic breakthroughs.

4.
PLoS Pathog ; 20(4): e1011829, 2024 Apr.
Article En | MEDLINE | ID: mdl-38620036

Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.


Herpes Simplex , Herpesvirus 1, Human , Mitochondria , Mitochondria/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/metabolism , Humans , Herpes Simplex/metabolism , Herpes Simplex/virology , Herpes Simplex/pathology , Animals , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Herpesviridae Infections/pathology , Disease Progression , Chlorocebus aethiops
5.
Circ Res ; 134(11): 1405-1423, 2024 May 24.
Article En | MEDLINE | ID: mdl-38639096

BACKGROUND: While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS: Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS: Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS: By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.


Atherosclerosis , Gene Regulatory Networks , Single-Cell Analysis , Humans , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Plaque, Atherosclerotic , Disease Progression , Female , Macrophages/metabolism , Macrophages/pathology , Mice, Knockout , Receptors, LDL/genetics , Receptors, LDL/metabolism , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
6.
Arterioscler Thromb Vasc Biol ; 44(6): 1330-1345, 2024 Jun.
Article En | MEDLINE | ID: mdl-38602103

BACKGROUND: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS: We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS: Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.


Calcitonin Receptor-Like Protein , Coronary Artery Disease , Endothelial Cells , Enhancer Elements, Genetic , Polymorphism, Single Nucleotide , Stress, Mechanical , Humans , Endothelial Cells/metabolism , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Calcitonin Receptor-Like Protein/genetics , Calcitonin Receptor-Like Protein/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Mechanotransduction, Cellular , Cells, Cultured , Gene Expression Regulation , Protein Binding , Genetic Predisposition to Disease , Binding Sites
7.
Trends Genet ; 40(4): 296-298, 2024 Apr.
Article En | MEDLINE | ID: mdl-38462400

Heikkinen and colleagues recently demonstrated that genetic variation, rather than dietary changes, governs gene regulation in liver. This finding highlights the impact of noncoding variants on chromatin accessibility, histone modifications, transcription factor binding, and gene expression and has implications for future research directions in understanding the genetic basis of disease.


Chromatin , Gene Expression Regulation , Humans , Gene Expression Regulation/genetics , Chromatin/genetics , Histone Code , Obesity/genetics , Genetic Variation/genetics
8.
Arterioscler Thromb Vasc Biol ; 44(4): 898-914, 2024 Apr.
Article En | MEDLINE | ID: mdl-38328934

BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.


Atherosclerosis , Cardiovascular Diseases , Humans , Cardiovascular Diseases/metabolism , Genome-Wide Association Study , Proteomics , Muscle, Smooth, Vascular/metabolism , Aorta/metabolism , Atherosclerosis/pathology , Myocytes, Smooth Muscle/metabolism , Cells, Cultured
9.
Cardiovasc Res ; 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38289873

AIMS: Vascular smooth muscle cells (SMCs) and their derivatives are key contributors to the development of atherosclerosis. However, studying changes in SMC gene expression in heterogeneous vascular tissues is challenging due to the technical limitations and high cost associated with current approaches. In this paper, we apply Translating Ribosome Affinity Purification sequencing (TRAP-Seq) to profile SMC-specific gene expression directly from tissue. METHODS AND RESULTS: To facilitate SMC-specific translatome analysis, we generated SMCTRAP mice, a transgenic mouse line expressing EGFP-tagged ribosomal protein L10a (EGFP-L10a) under the control of the SMC-specific αSMA promoter. These mice were further crossed with the atherosclerosis model Ldlr-/-, ApoB100/100 to generate SMCTRAP-AS mice and used to profile atherosclerosis-associated SMCs in thoracic aorta samples of 15-month-old SMCTRAP and SMCTRAP-AS mice. Our analysis of SMCTRAP-AS mice showed that EGFP-L10a expression was localized to SMCs in various tissues, including the aortic wall and plaque. The TRAP fraction demonstrated high enrichment of known SMC-specific genes, confirming the specificity of our approach. We identified several genes, including Cemip, Lum, Mfge8, Spp1, and Serpina3, that are known to be involved in atherosclerosis-induced gene expression. Moreover, we identified several novel genes not previously linked to SMCs in atherosclerosis, such as Anxa4, Cd276, Itih4, Myof, Pcdh11x, Rab31, Serpinb6b, Slc35e4, Slc8a3, and Spink5. Among them, we confirmed the SMC-specific expression of Itih4 in atherosclerotic lesions using immunofluorescence staining of mouse aortic roots and spatial transcriptomics of human carotid arteries. Furthermore, our more detailed analysis of Itih4 showed its link to coronary artery disease (CAD) through the colocalization of GWAS, splice-QTL, and protein-QTL signals. CONCLUSIONS: We generated a SMC-specific TRAP mouse line to study atherosclerosis and identified Itih4 as a novel SMC-expressed gene in atherosclerotic plaques, warranting further investigation of its putative function in extracellular matrix stability and genetic evidence of causality.

10.
Redox Biol ; 69: 103031, 2024 Feb.
Article En | MEDLINE | ID: mdl-38184997

The Kelch-like ECH-associated protein 1 (KEAP1) - Nuclear factor erythroid 2 -related factor 2 (NRF2) pathway is the major transcriptional stress response system in cells against oxidative and electrophilic stress. NRF2 is frequently constitutively active in many cancers, rendering the cells resistant to chemo- and radiotherapy. Loss-of-function (LOF) mutations in the repressor protein KEAP1 are common in non-small cell lung cancer, particularly adenocarcinoma. While the mutations can occur throughout the gene, they are enriched in certain areas, indicating that these may have unique functional importance. In this study, we show that in the GSEA analysis of TCGA lung adenocarcinoma RNA-seq data, the KEAP1 mutations in R320 and R470 were associated with enhanced Tumor Necrosis Factor alpha (TNFα) - Nuclear Factor kappa subunit B (NFκB) signaling as well as MYC and MTORC1 pathways. To address the functional role of these hotspot mutations, affinity purification and mass spectrometry (AP-MS) analysis of wild type (wt) KEAP1 and its mutation forms, R320Q and R470C were employed to interrogate differences in the protein interactome. We identified TNF receptor associated factor 2 (TRAF2) as a putative protein interaction partner. Both mutant KEAP1 forms showed increased interaction with TRAF2 and other anti-apoptotic proteins, suggesting that apoptosis signalling could be affected by the protein interactions. A549 lung adenocarcinoma cells overexpressing mutant KEAP1 showed high TRAF2-mediated NFκB activity and increased protection against apoptosis, XIAP being one of the key proteins involved in anti-apoptotic signalling. To conclude, KEAP1 R320Q and R470C and its interaction with TRAF2 leads to activation of NFκB pathway, thereby protecting against apoptosis.


Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Cell Line, Tumor , Intracellular Signaling Peptides and Proteins/metabolism , Adenocarcinoma of Lung/genetics , Apoptosis/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Mutation
11.
J Cell Biol ; 223(3)2024 03 04.
Article En | MEDLINE | ID: mdl-38231044

Vascular homeostasis and pathophysiology are tightly regulated by mechanical forces generated by hemodynamics. Vascular disorders such as atherosclerotic diseases largely occur at curvatures and bifurcations where disturbed blood flow activates endothelial cells while unidirectional flow at the straight part of vessels promotes endothelial health. Integrated analysis of the endothelial transcriptome, the 3D epigenome, and human genetics systematically identified the SNP-enriched cistrome in vascular endothelium subjected to well-defined atherosclerosis-prone disturbed flow or atherosclerosis-protective unidirectional flow. Our results characterized the endothelial typical- and super-enhancers and underscored the critical regulatory role of flow-sensitive endothelial super-enhancers. CRISPR interference and activation validated the function of a previously unrecognized unidirectional flow-induced super-enhancer that upregulates antioxidant genes NQO1, CYB5B, and WWP2, and a disturbed flow-induced super-enhancer in endothelium which drives prothrombotic genes EDN1 and HIVEP in vascular endothelium. Our results employing multiomics identify the cis-regulatory architecture of the flow-sensitive endothelial epigenome related to atherosclerosis and highlight the regulatory role of super-enhancers in mechanotransduction mechanisms.


Atherosclerosis , Endothelial Cells , Mechanotransduction, Cellular , Humans , Atherosclerosis/genetics , Endothelium, Vascular
12.
Alzheimers Dement ; 20(2): 954-974, 2024 Feb.
Article En | MEDLINE | ID: mdl-37828821

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disease and the main cause of dementia in the elderly. AD pathology is characterized by accumulation of microglia around the beta-amyloid (Aß) plaques which assumes disease-specific transcriptional signatures, as for the disease-associated microglia (DAM). However, the regulators of microglial phagocytosis are still unknown. METHODS: We isolated Aß-laden microglia from the brain of 5xFAD mice for RNA sequencing to characterize the transcriptional signature in phagocytic microglia and to identify the key non-coding RNAs capable of regulating microglial phagocytosis. Through spatial sequencing, we show the transcriptional changes of microglia in the AD mouse brain in relation to Aß proximity. RESULTS: Finally, we show that phagocytic messenger RNAs are regulated by miR-7a-5p, miR-29a-3p and miR-146a-5p microRNAs and segregate the DAM population into phagocytic and non-phagocytic states. DISCUSSION: Our study pinpoints key regulators of microglial Aß clearing capacity suggesting new targets for future therapeutic approaches.


Alzheimer Disease , MicroRNAs , Neurodegenerative Diseases , Humans , Mice , Animals , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Microglia/pathology , Neurodegenerative Diseases/pathology , Amyloid beta-Peptides , MicroRNAs/genetics , Mice, Transgenic , Disease Models, Animal
13.
medRxiv ; 2023 Nov 10.
Article En | MEDLINE | ID: mdl-37986932

Background: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular diseases (CVD), the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a "contractile" to a "synthetic" phenotype characterized by an increased proliferation, migration, production of extracellular matrix (ECM) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of CVD, including coronary artery disease (CAD), stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies (GWAS). Methods: Using human aortic SMCs from 123 multi-ancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of the conditioned media. Results: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping (pQTL) and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. Conclusions: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.

14.
bioRxiv ; 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37873248

Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.

15.
J Biol Chem ; 299(11): 105291, 2023 11.
Article En | MEDLINE | ID: mdl-37748649

Impaired oxygen homeostasis is a frequently encountered pathophysiological factor in multiple complex diseases, including cardiovascular disease and cancer. While the canonical hypoxia response pathway is well characterized, less is known about the role of noncoding RNAs in this process. Here, we investigated the nascent and steady-state noncoding transcriptional responses in endothelial cells and their potential roles in regulating the hypoxic response. Notably, we identify a novel antisense long noncoding RNA that convergently overlaps the majority of the hypoxia inducible factor 1 alpha (HIF1A) locus, which is expressed across several cell types and elevated in atherosclerotic lesions. The antisense (HIF1A-AS) is produced as a stable, unspliced, and polyadenylated nuclear retained transcript. HIF1A-AS is highly induced in hypoxia by both HIF1A and HIF2A and exhibits anticorrelation with the coding HIF1A transcript and protein expression. We further characterized this functional relationship by CRISPR-mediated bimodal perturbation of the HIF1A-AS promoter. We provide evidence that HIF1A-AS represses the expression of HIF1a in cis by repressing transcriptional elongation and deposition of H3K4me3, and that this mechanism is dependent on the act of antisense transcription itself. Overall, our results indicate a critical regulatory role of antisense mediated transcription in regulation of HIF1A expression and cellular response to hypoxia.


Endothelial Cells , RNA, Long Noncoding , Humans , Cell Hypoxia , Endothelial Cells/metabolism , Hypoxia/genetics , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Promoter Regions, Genetic , RNA, Long Noncoding/genetics , Cells, Cultured
16.
Nat Cardiovasc Res ; 2(3): 307-321, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-37476204

Leukocytes and resident cells in the arterial wall contribute to atherosclerosis, especially at sites of disturbed blood flow. Expression of endothelial Tie1 receptor tyrosine kinase is enhanced at these sites, and attenuation of its expression reduces atherosclerotic burden and decreases inflammation. However, Tie2 tyrosine kinase function in atherosclerosis is unknown. Here we provide genetic evidence from humans and from an atherosclerotic mouse model to show that TIE2 is associated with protection from coronary artery disease. We show that deletion of Tie2, or both Tie2 and Tie1, in the arterial endothelium promotes atherosclerosis by increasing Foxo1 nuclear localization, endothelial adhesion molecule expression and accumulation of immune cells. We also show that Tie2 is expressed in a subset of aortic fibroblasts, and its silencing in these cells increases expression of inflammation-related genes. Our findings indicate that unlike Tie1, the Tie2 receptor functions as the dominant endothelial angiopoietin receptor that protects from atherosclerosis.

17.
Elife ; 122023 05 18.
Article En | MEDLINE | ID: mdl-37199488

Background: Sporadic venous malformation (VM) and angiomatosis of soft tissue (AST) are benign, congenital vascular anomalies affecting venous vasculature. Depending on the size and location of the lesion, symptoms vary from motility disturbances to pain and disfigurement. Due to the high recurrence of the lesions, more effective therapies are needed. Methods: As targeting stromal cells has been an emerging concept in anti-angiogenic therapies, here, by using VM/AST patient samples, RNA-sequencing, cell culture techniques, and a xenograft mouse model, we investigated the crosstalk of endothelial cells (EC) and fibroblasts and its effect on vascular lesion growth. Results: We report, for the first time, the expression and secretion of transforming growth factor A (TGFA) in ECs or intervascular stromal cells in AST and VM lesions. TGFA induced secretion of vascular endothelial growth factor (VEGF-A) in paracrine fashion, and regulated EC proliferation. Oncogenic PIK3CA variant in p.H1047R, a common somatic mutation found in these lesions, increased TGFA expression, enrichment of hallmark hypoxia, and in a mouse xenograft model, lesion size, and vascularization. Treatment with afatinib, a pan-ErbB tyrosine-kinase inhibitor, decreased vascularization and lesion size in a mouse xenograft model with ECs expressing oncogenic PIK3CA p.H1047R variant and fibroblasts. Conclusions: Based on the data, we suggest that targeting of both intervascular stromal cells and ECs is a potential treatment strategy for vascular lesions having a fibrous component. Funding: Academy of Finland, Ella and Georg Ehnrooth foundation, the ERC grants, Sigrid Jusélius Foundation, Finnish Foundation for Cardiovascular Research, Jane and Aatos Erkko Foundation, GeneCellNano Flagship program, and Department of Musculoskeletal and Plastic Surgery, Helsinki University Hospital.


Endothelial Cells , Vascular Malformations , Humans , Mice , Animals , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Class I Phosphatidylinositol 3-Kinases/metabolism , Vascular Malformations/drug therapy , Vascular Malformations/genetics , Vascular Malformations/pathology
18.
EBioMedicine ; 92: 104620, 2023 Jun.
Article En | MEDLINE | ID: mdl-37224770

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a fast-growing, underdiagnosed, epidemic. We hypothesise that obesity-related inflammation compromises adipose tissue functions, preventing efficient fat storage, and thus driving ectopic fat accumulation into the liver. METHODS: To identify adipose-based mechanisms and potential serum biomarker candidates (SBCs) for NAFLD, we utilise dual-tissue RNA-sequencing (RNA-seq) data in adipose tissue and liver, paired with histology-based NAFLD diagnosis, from the same individuals in a cohort of obese individuals. We first scan for genes that are differentially expressed (DE) for NAFLD in obese individuals' subcutaneous adipose tissue but not in their liver; encode proteins secreted to serum; and show preferential adipose expression. Then the identified genes are filtered to key adipose-origin NAFLD genes by best subset analysis, knockdown experiments during human preadipocyte differentiation, recombinant protein treatment experiments in human liver HepG2 cells, and genetic analysis. FINDINGS: We discover a set of genes, including 10 SBCs, that may modulate NAFLD pathogenesis by impacting adipose tissue function. Based on best subset analysis, we further follow-up on two SBCs CCDC80 and SOD3 by knockdown in human preadipocytes and subsequent differentiation experiments, which show that they modulate crucial adipogenesis genes, LPL, SREBPF1, and LEP. We also show that treatment of the liver HepG2 cells with the CCDC80 and SOD3 recombinant proteins impacts genes related to steatosis and lipid processing, including PPARA, NFE2L2, and RNF128. Finally, utilizing the adipose NAFLD DE gene cis-regulatory variants associated with serum triglycerides (TGs) in extensive genome-wide association studies (GWASs), we demonstrate a unidirectional effect of serum TGs on NAFLD with Mendelian Randomization (MR) analysis. We also demonstrate that a single SNP regulating one of the SBC genes, rs2845885, produces a significant MR result by itself. This supports the conclusion that genetically regulated adipose expression of the NAFLD DE genes may contribute to NAFLD through changes in serum TG levels. INTERPRETATION: Our results from the dual-tissue transcriptomics screening improve the understanding of obesity-related NAFLD by providing a targeted set of 10 adipose tissue-active genes as new serum biomarker candidates for the currently grossly underdiagnosed fatty liver disease. FUNDING: The work was supported by NIH grants R01HG010505 and R01DK132775. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The KOBS study (J. P.) was supported by the Finnish Diabetes Research Foundation, Kuopio University Hospital Project grant (EVO/VTR grants 2005-2019), and the Academy of Finland grant (Contract no. 138006). This study was funded by the European Research Council under the European Union's Horizon 2020 research and innovation program (Grant No. 802825 to M. U. K.). K. H. P. was funded by the Academy of Finland (grant numbers 272376, 266286, 314383, and 335443), the Finnish Medical Foundation, Gyllenberg Foundation, Novo Nordisk Foundation (grant numbers NNF10OC1013354, NNF17OC0027232, and NNF20OC0060547), Finnish Diabetes Research Foundation, Finnish Foundation for Cardiovascular Research, University of Helsinki, and Helsinki University Hospital and Government Research Funds. I. S. was funded by the Instrumentarium Science Foundation. Personal grants to U. T. A. were received from the Matti and Vappu Maukonen Foundation, Ella och Georg Ehrnrooths Stiftelse and the Finnish Foundation for Cardiovascular Research.


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , Genome-Wide Association Study , Obesity/complications , Obesity/genetics , Obesity/metabolism , Liver/metabolism , Biomarkers/metabolism
19.
Am J Hum Genet ; 110(5): 722-740, 2023 05 04.
Article En | MEDLINE | ID: mdl-37060905

Coronary artery disease (CAD) is a pandemic disease where up to half of the risk is explained by genetic factors. Advanced insights into the genetic basis of CAD require deeper understanding of the contributions of different cell types, molecular pathways, and genes to disease heritability. Here, we investigate the biological diversity of atherosclerosis-associated cell states and interrogate their contribution to the genetic risk of CAD by using single-cell and bulk RNA sequencing (RNA-seq) of mouse and human lesions. We identified 12 disease-associated cell states that we characterized further by gene set functional profiling, ligand-receptor prediction, and transcription factor inference. Importantly, Vcam1+ smooth muscle cell state genes contributed most to SNP-based heritability of CAD. In line with this, genetic variants near smooth muscle cell state genes and regulatory elements explained the largest fraction of CAD-risk variance between individuals. Using this information for variant prioritization, we derived a hybrid polygenic risk score (PRS) that demonstrated improved performance over a classical PRS. Our results provide insights into the biological mechanisms associated with CAD risk, which could make a promising contribution to precision medicine and tailored therapeutic interventions in the future.


Atherosclerosis , Coronary Artery Disease , Humans , Atherosclerosis/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Risk Factors , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics
20.
Redox Biol ; 61: 102644, 2023 05.
Article En | MEDLINE | ID: mdl-36867945

The NRF2 pathway is frequently activated in various cancer types, yet a comprehensive analysis of its effects across different malignancies is currently lacking. We developed a NRF2 activity metric and utilized it to conduct a pan-cancer analysis of oncogenic NRF2 signaling. We identified an immunoevasive phenotype where high NRF2 activity is associated with low interferon-gamma (IFNγ), HLA-I expression and T cell and macrophage infiltration in squamous malignancies of the lung, head and neck area, cervix and esophagus. Squamous NRF2 overactive tumors comprise a molecular phenotype with SOX2/TP63 amplification, TP53 mutation and CDKN2A loss. These immune cold NRF2 hyperactive diseases are associated with upregulation of immunomodulatory NAMPT, WNT5A, SPP1, SLC7A11, SLC2A1 and PD-L1. Based on our functional genomics analyses, these genes represent candidate NRF2 targets, suggesting direct modulation of the tumor immune milieu. Single-cell mRNA data shows that cancer cells of this subtype exhibit decreased expression of IFNγ responsive ligands, and increased expression of immunosuppressive ligands NAMPT, SPP1 and WNT5A that mediate signaling in intercellular crosstalk. In addition, we discovered that the negative relationship of NRF2 and immune cells are explained by stromal populations of lung squamous cell carcinoma, and this effect spans multiple squamous malignancies based on our molecular subtyping and deconvolution data.


Carcinoma, Squamous Cell , NF-E2-Related Factor 2 , Female , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Ligands , Lung Neoplasms/genetics , NF-E2-Related Factor 2/metabolism
...