Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Nat Med ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38773340

Acute and chronic coronary syndromes (ACS and CCS) are leading causes of mortality. Inflammation is considered a key pathogenic driver of these diseases, but the underlying immune states and their clinical implications remain poorly understood. Multiomic factor analysis (MOFA) allows unsupervised data exploration across multiple data types, identifying major axes of variation and associating these with underlying molecular processes. We hypothesized that applying MOFA to multiomic data obtained from blood might uncover hidden sources of variance and provide pathophysiological insights linked to clinical needs. Here we compile a longitudinal multiomic dataset of the systemic immune landscape in both ACS and CCS (n = 62 patients in total, n = 15 women and n = 47 men) and validate this in an external cohort (n = 55 patients in total, n = 11 women and n = 44 men). MOFA reveals multicellular immune signatures characterized by distinct monocyte, natural killer and T cell substates and immune-communication pathways that explain a large proportion of inter-patient variance. We also identify specific factors that reflect disease state or associate with treatment outcome in ACS as measured using left ventricular ejection fraction. Hence, this study provides proof-of-concept evidence for the ability of MOFA to uncover multicellular immune programs in cardiovascular disease, opening new directions for mechanistic, biomarker and therapeutic studies.

2.
Blood ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38648571

Triple-negative breast cancer (TNBC) is an aggressive tumor entity, in which immune checkpoint (IC) molecules are primarily synthesized in the tumor environment. Here, we report that procoagulant platelets bear large amounts of such immunomodulatory factors and that the presence of these cellular blood components in TNBC relates to pro-tumorigenic immune cell activity and impaired survival. Mechanistically, tumor-released nucleic acids attract platelets into the aberrant tumor microvasculature where they undergo procoagulant activation, thus delivering specific stimulatory and inhibitory IC molecules. This concomitantly promotes pro-tumorigenic myeloid leukocyte responses and compromises anti-tumorigenic lymphocyte activity, ultimately supporting tumor growth. Interference with platelet-leukocyte interactions prevented immune cell misguidance and suppressed tumor progression, nearly as effective as systemic IC inhibition. Hence, our data uncover a self-sustaining mechanism of TNBC in utilizing platelets to misdirect immune cell responses. Targeting this irregular multicellular interplay might represent a novel immunotherapeutic strategy in TNBC without side effects of systemic IC inhibition.

4.
Sci Adv ; 10(12): eadl1710, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38517968

Neutrophils rapidly respond to inflammation and infection, but to which degree their functional trajectories after mobilization from the bone marrow are shaped within the circulation remains vague. Experimental limitations have so far hampered neutrophil research in human disease. Here, using innovative fixation and single-cell-based toolsets, we profile human and murine neutrophil transcriptomes and proteomes during steady state and bacterial infection. We find that peripheral priming of circulating neutrophils leads to dynamic shifts dominated by conserved up-regulation of antimicrobial genes across neutrophil substates, facilitating pathogen containment. We show the TLR4/NF-κB signaling-dependent up-regulation of canonical neutrophil activation markers like CD177/NB-1 during acute inflammation, resulting in functional shifts in vivo. Blocking de novo RNA synthesis in circulating neutrophils abrogates these plastic shifts and prevents the adaptation of antibacterial neutrophil programs by up-regulation of distinct effector molecules upon infection. These data underline transcriptional plasticity as a relevant mechanism of functional neutrophil reprogramming during acute infection to foster bacterial containment within the circulation.


Neutrophils , Transcriptome , Mice , Humans , Animals , Neutrophils/metabolism , Proteomics , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling
5.
Blood ; 142(17): 1413-1425, 2023 10 26.
Article En | MEDLINE | ID: mdl-37683182

Platelets are key vascular effectors in hemostasis, with activation signals leading to fast recruitment, aggregation, and clot formation. The canonical process of hemostasis is well-characterized and shares many similarities with pathological thrombus formation. However, platelets are also crucially involved in the maintenance of vascular integrity under both steady-state and inflammatory conditions by ensuring blood vessel homeostasis and preventing microbleeds. In these settings, platelets use distinct receptors, signaling pathways, and ensuing effector functions to carry out their deeds. Instead of simply forming clots, they mainly act as individual sentinels that swiftly adapt their behavior to the local microenvironment. In this review, we summarize previously recognized and more recent studies that have elucidated how anucleate, small platelets manage to maintain vascular integrity when faced with challenges of infection, sterile inflammation, and even malignancy. We dissect how platelets are recruited to the vascular wall, how they identify sites of injury, and how they prevent hemorrhage as single cells. Furthermore, we discuss mechanisms and consequences of platelets' interaction with leukocytes and endothelial cells, the relevance of adhesion as well as signaling receptors, in particular immunoreceptor tyrosine-based activation motif receptors, and cross talk with the coagulation system. Finally, we outline how recent insights into inflammatory hemostasis and vascular integrity may aid in the development of novel therapeutic strategies to prevent hemorrhagic events and vascular dysfunction in patients who are critically ill.


Neoplasms , Thrombosis , Humans , Endothelial Cells , Blood Platelets/metabolism , Hemostasis/physiology , Thrombosis/metabolism , Neoplasms/metabolism , Hemorrhage/metabolism , Inflammation/metabolism , Tumor Microenvironment
6.
Immunity ; 56(10): 2325-2341.e15, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37652021

Maladaptive, non-resolving inflammation contributes to chronic inflammatory diseases such as atherosclerosis. Because macrophages remove necrotic cells, defective macrophage programs can promote chronic inflammation with persistent tissue injury. Here, we investigated the mechanisms sustaining vascular macrophages. Intravital imaging revealed a spatiotemporal macrophage niche across vascular beds alongside mural cells (MCs)-pericytes and smooth muscle cells. Single-cell transcriptomics, co-culture, and genetic deletion experiments revealed MC-derived expression of the chemokines CCL2 and MIF, which actively preserved macrophage survival and their homeostatic functions. In atherosclerosis, this positioned macrophages in viable plaque areas, away from the necrotic core, and maintained a homeostatic macrophage phenotype. Disruption of this MC-macrophage unit via MC-specific deletion of these chemokines triggered detrimental macrophage relocalizing, exacerbated plaque necrosis, inflammation, and atheroprogression. In line, CCL2 inhibition at advanced stages of atherosclerosis showed detrimental effects. This work presents a MC-driven safeguard toward maintaining the homeostatic vascular macrophage niche.


Atherosclerosis , Plaque, Atherosclerotic , Humans , Macrophages/metabolism , Atherosclerosis/metabolism , Plaque, Atherosclerotic/metabolism , Chemokines/metabolism , Inflammation/metabolism , Necrosis/metabolism
7.
J Thromb Haemost ; 21(8): 2020-2031, 2023 08.
Article En | MEDLINE | ID: mdl-37178769

Long COVID is a public health emergency affecting millions of people worldwide, characterized by heterogeneous symptoms across multiple organ systems. Here, we discuss the current evidence linking thromboinflammation to postacute sequelae of COVID-19. Studies have found persistence of vascular damage with increased circulating markers of endothelial dysfunction, coagulation abnormalities with heightened thrombin generation capacity, and abnormalities in platelet counts in postacute sequelae of COVID-19. Neutrophil phenotype resembles acute COVID-19 with an increase in activation and Neutrophil Extracellular Trap formation. These insights are potentially linked by elevated platelet-neutrophil aggregate formation. This hypercoagulable state in turn can lead to microvascular thrombosis, evidenced by microclots and elevated D-dimer in the circulation as well as perfusion abnormalities in the lungs and brains of patients with long COVID. Also, COVID-19 survivors experience an increased rate of arterial and venous thrombotic events. We discuss 3 important, potentially intertwined hypotheses that might contribute to thromboinflammation in long COVID: lasting structural changes, most prominently endothelial damage, caused during initial infection; a persistent viral reservoir; and immunopathology driven by a misguided immune system. Finally, we outline the necessity for large, well-characterized clinical cohorts and mechanistic studies to clarify the contribution of thromboinflammation to long COVID.


COVID-19 , Thrombosis , Humans , COVID-19/complications , Inflammation , Post-Acute COVID-19 Syndrome , Thromboinflammation , Disease Progression
8.
Blood ; 141(24): 2973-2992, 2023 06 15.
Article En | MEDLINE | ID: mdl-37018659

Platelets are not only the first responders in thrombosis and hemostasis but also central players in inflammation. Compared with platelets recruited to thrombi, immune-responsive platelets use distinct effector functions including actin-related protein complex 2/3-dependent migration along adhesive substrate gradients (haptotaxis), which prevents inflammatory bleeding and contributes to host defense. How platelet migration in this context is regulated on a cellular level is incompletely understood. Here, we use time-resolved morphodynamic profiling of individual platelets to show that migration, in contrast to clot retraction, requires anisotropic myosin IIa-activity at the platelet rear which is preceded by polarized actin polymerization at the front to initiate and maintain migration. Integrin GPIIb-dependent outside-in signaling via Gα13 coordinates polarization of migrating platelets to trigger tyrosine kinase c-Src/14-3-3ζ-dependent lamellipodium formation and functions independent of soluble agonists or chemotactic signals. Inhibitors of this signaling cascade, including the clinically used ABL/c-Src inhibitor dasatinib, interfere predominantly with the migratory capacity of platelets, without major impairment of classical platelet functions. In murine inflammation models, this translates to reduced migration of platelets visualized by 4D intravital microscopy, resulting in increased inflammation-associated hemorrhage in acute lung injury. Finally, platelets isolated from patients with leukemia treated with dasatinib who are prone to clinically relevant hemorrhage exhibit prominent migration defects, whereas other platelet functions are only partially affected. In summary, we define a distinct signaling pathway essential for migration and provide novel mechanistic insights explaining dasatinib-related platelet dysfunction and bleeding.


Blood Platelets , Thrombosis , Humans , Mice , Animals , Blood Platelets/metabolism , 14-3-3 Proteins/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoprotein IIb/metabolism , Dasatinib , Actins/metabolism , Thrombosis/metabolism , Inflammation/metabolism
10.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166592, 2023 02.
Article En | MEDLINE | ID: mdl-36328146

SARS-CoV-2 remains an acute threat to human health, endangering hospital capacities worldwide. Previous studies have aimed at informing pathophysiologic understanding and identification of disease indicators for risk assessment, monitoring, and therapeutic guidance. While findings start to emerge in the general population, observations in high-risk patients with complex pre-existing conditions are limited. We addressed the gap of existing knowledge with regard to a differentiated understanding of disease dynamics in SARS-CoV-2 infection while specifically considering disease stage and severity. We biomedically characterized quantitative proteomics in a hospitalized cohort of COVID-19 patients with mild to severe symptoms suffering from different (co)-morbidities in comparison to both healthy individuals and patients with non-COVID related inflammation. Deep clinical phenotyping enabled the identification of individual disease trajectories in COVID-19 patients. By the use of the individualized disease phase assignment, proteome analysis revealed a severity dependent general type-2-centered host response side-by-side with a disease specific antiviral immune reaction in early disease. The identification of phenomena such as neutrophil extracellular trap (NET) formation and a pro-coagulatory response characterizing severe disease was successfully validated in a second cohort. Together with the regulation of proteins related to SARS-CoV-2-specific symptoms identified by proteome screening, we not only confirmed results from previous studies but provide novel information for biomarker and therapy development.


COVID-19 , Humans , SARS-CoV-2/metabolism , Antiviral Agents , Proteome/metabolism , Proteomics
11.
Blood ; 140(2): 121-139, 2022 07 14.
Article En | MEDLINE | ID: mdl-35472164

Impairment of vascular integrity is a hallmark of inflammatory diseases. We recently reported that single immune-responsive platelets migrate and reposition themselves to sites of vascular injury to prevent bleeding. However, it remains unclear how single platelets preserve vascular integrity once encountering endothelial breaches. Here we demonstrate by intravital microscopy combined with genetic mouse models that procoagulant activation (PA) of single platelets and subsequent recruitment of the coagulation cascade are crucial for the prevention of inflammatory bleeding. Using a novel lactadherin-based compound, we detect phosphatidylserine (PS)-positive procoagulant platelets in the inflamed vasculature. We identify exposed collagen as the central trigger arresting platelets and initiating subsequent PA in a CypD- and TMEM16F-dependent manner both in vivo and in vitro. Platelet PA promotes binding of the prothrombinase complex to the platelet membrane, greatly enhancing thrombin activity and resulting in fibrin formation. PA of migrating platelets is initiated by costimulation via integrin αIIbß3 (GPIIBIIIA)/Gα13-mediated outside-in signaling and glycoprotein VI signaling, leading to an above-threshold intracellular calcium release. This effectively targets the coagulation cascade to breaches of vascular integrity identified by patrolling platelets. Platelet-specific genetic loss of either CypD or TMEM16F as well as combined blockade of platelet GPIIBIIIA and glycoprotein VI reduce platelet PA in vivo and aggravate pulmonary inflammatory hemorrhage. Our findings illustrate a novel role of procoagulant platelets in the prevention of inflammatory bleeding and provide evidence that PA of patrolling platelet sentinels effectively targets and confines activation of coagulation to breaches of vascular integrity.


Blood Platelets , Platelet Membrane Glycoproteins , Animals , Blood Platelets/metabolism , Hemorrhage/metabolism , Mice , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoproteins/metabolism
12.
Blood ; 140(5): 478-490, 2022 08 04.
Article En | MEDLINE | ID: mdl-35486845

Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are based on a range of novel platforms, with adenovirus-based approaches (like ChAdOx1 nCov-19) being one of them. Recently, a novel complication of SARS-CoV-2-targeted adenovirus vaccines has emerged: immune thrombocytopenia, either isolated, or accompanied by thrombosis (then termed VITT). This complication is characterized by low platelet counts, and in the case of VITT, also by platelet-activating platelet factor 4 antibodies reminiscent of heparin-induced thrombocytopenia, leading to a prothrombotic state with clot formation at unusual anatomic sites. Here, we detected antiplatelet antibodies targeting platelet glycoprotein receptors in 30% of patients with proven VITT (n = 27) and 42% of patients with isolated thrombocytopenia after ChAdOx1 nCov-19 vaccination (n = 26), indicating broad antiplatelet autoimmunity in these clinical entities. We use in vitro and in vivo models to characterize possible mechanisms of these platelet-targeted autoimmune responses leading to thrombocytopenia. We show that IV but not intramuscular injection of ChAdOx1 nCov-19 triggers platelet-adenovirus aggregate formation and platelet activation in mice. After IV injection, these aggregates are phagocytosed by macrophages in the spleen, and platelet remnants are found in the marginal zone and follicles. This is followed by a pronounced B-cell response with the emergence of circulating antibodies binding to platelets. Our work contributes to the understanding of platelet-associated complications after ChAdOx1 nCov-19 administration and highlights accidental IV injection as a potential mechanism of platelet-targeted autoimmunity. Hence, preventing IV injection when administering adenovirus-based vaccines could be a potential measure against platelet-associated pathologies after vaccination.


COVID-19 Vaccines , COVID-19 , ChAdOx1 nCoV-19 , Thrombocytopenia , Animals , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19/adverse effects , Immunity , Mice , Platelet Factor 4 , SARS-CoV-2 , Spleen , Thrombocytopenia/etiology
13.
Nat Commun ; 13(1): 1018, 2022 02 23.
Article En | MEDLINE | ID: mdl-35197461

The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.


COVID-19/immunology , Adult , Aged , Aged, 80 and over , Ambulatory Care , Cytokines/blood , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Interferons/immunology , Killer Cells, Natural/immunology , Longitudinal Studies , Male , Middle Aged , Monocytes/immunology , Nasopharynx/immunology , Nasopharynx/virology , SARS-CoV-2/physiology , T-Lymphocytes/immunology
14.
Haematologica ; 107(7): 1669-1680, 2022 07 01.
Article En | MEDLINE | ID: mdl-34525794

Visualizing cell behavior and effector function on a single cell level has been crucial for understanding key aspects of mammalian biology. Due to their small size, large number and rapid recruitment into thrombi, there is a lack of data on fate and behavior of individual platelets in thrombosis and hemostasis. Here we report the use of platelet lineage restricted multi-color reporter mouse strains to delineate platelet function on a single cell level. We show that genetic labeling allows for single platelet and megakaryocyte (MK) tracking and morphological analysis in vivo and in vitro, while not affecting lineage functions. Using Cre-driven Confetti expression, we provide insights into temporal gene expression patterns as well as spatial clustering of MK in the bone marrow. In the vasculature, shape analysis of activated platelets recruited to thrombi identifies ubiquitous filopodia formation with no evidence of lamellipodia formation. Single cell tracking in complex thrombi reveals prominent myosin-dependent motility of platelets and highlights thrombus formation as a highly dynamic process amenable to modification and intervention of the acto-myosin cytoskeleton. Platelet function assays combining flow cytrometry, as well as in vivo, ex vivo and in vitro imaging show unaltered platelet functions of multicolor reporter mice compared to wild-type controls. In conclusion, platelet lineage multicolor reporter mice prove useful in furthering our understanding of platelet and MK biology on a single cell level.


Megakaryocytes , Thrombosis , Animals , Blood Platelets/metabolism , Bone Marrow/metabolism , Hemostasis , Mammals , Megakaryocytes/metabolism , Mice , Thrombosis/metabolism
15.
JCI Insight ; 6(18)2021 09 22.
Article En | MEDLINE | ID: mdl-34403366

Neutrophils provide a critical line of defense in immune responses to various pathogens, inflicting self-damage upon transition to a hyperactivated, procoagulant state. Recent work has highlighted proinflammatory neutrophil phenotypes contributing to lung injury and acute respiratory distress syndrome (ARDS) in patients with coronavirus disease 2019 (COVID-19). Here, we use state-of-the art mass spectrometry-based proteomics and transcriptomic and correlative analyses as well as functional in vitro and in vivo studies to dissect how neutrophils contribute to the progression to severe COVID-19. We identify a reinforcing loop of both systemic and neutrophil intrinsic IL-8 (CXCL8/IL-8) dysregulation, which initiates and perpetuates neutrophil-driven immunopathology. This positive feedback loop of systemic and neutrophil autocrine IL-8 production leads to an activated, prothrombotic neutrophil phenotype characterized by degranulation and neutrophil extracellular trap (NET) formation. In severe COVID-19, neutrophils directly initiate the coagulation and complement cascade, highlighting a link to the immunothrombotic state observed in these patients. Targeting the IL-8-CXCR-1/-2 axis interferes with this vicious cycle and attenuates neutrophil activation, degranulation, NETosis, and IL-8 release. Finally, we show that blocking IL-8-like signaling reduces severe acute respiratory distress syndrome of coronavirus 2 (SARS-CoV-2) spike protein-induced, human ACE2-dependent pulmonary microthrombosis in mice. In summary, our data provide comprehensive insights into the activation mechanisms of neutrophils in COVID-19 and uncover a self-sustaining neutrophil-IL-8 axis as a promising therapeutic target in severe SARS-CoV-2 infection.


COVID-19/metabolism , Interleukin-8/metabolism , Lung/immunology , Neutrophils/immunology , SARS-CoV-2 , Thrombosis/etiology , Animals , COVID-19/complications , COVID-19/pathology , Humans , Lung/pathology , Mice , Neutrophil Activation , Neutrophils/pathology , Phenotype , Thrombosis/pathology
16.
Front Cardiovasc Med ; 8: 824112, 2021.
Article En | MEDLINE | ID: mdl-35174225

Neutrophils and platelets are among the most abundant cell types in peripheral blood and characterized by high plasticity and a readily available reservoir of surface proteins and secretable granule contents. Receptor-mediated activation and granule release predispose both cell types for rapid responses to various stimuli. While neutrophils provide the first line of defense to microbial infections and platelets are known for their aggregatory functions in hemostasis and thrombosis, research of the past decade has highlighted that both cell types jointly shape local and systemic immune responses and clot formation alike. Concomitant activation of neutrophils and platelets has been observed in a variety of cardiovascular diseases, including arterial and venous thrombosis, atherosclerosis as well as myocardial infarction and ischemia-reperfusion injury. In this review, we describe the mechanisms by which neutrophils and platelets interact physically, how release of granule contents and soluble molecules by either cell type affects the other and how this mutual activation supports the efficacy of immune responses. We go on to describe how activated platelets contribute to host defense by triggering neutrophil extracellular trap (NET) formation in a process termed immunothrombosis, which in turn promotes local platelet activation and coagulation. Further, we review current evidence of hazardous overactivation of either cell type and their respective role in cardiovascular disease, with a focus on thrombosis, myocardial infarction and ischemia-reperfusion injury, and describe how neutrophils and platelets shape thromboinflammation in COVID-19. Finally, we provide an overview of therapeutic approaches targeting neutrophil-platelet interactions as novel treatment strategy in cardiovascular disease.

17.
J Thromb Haemost ; 19(2): 574-581, 2021 02.
Article En | MEDLINE | ID: mdl-33217134

OBJECTIVE: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe pneumonia, but also thrombotic complications and non-pulmonary organ failure. Recent studies suggest intravascular neutrophil activation and subsequent immune cell-triggered immunothrombosis as a central pathomechanism linking the heterogenous clinical picture of coronavirus disease 2019 (COVID-19). We sought to study whether immunothrombosis is a pathognomonic factor in COVID-19 or a general feature of (viral) pneumonia, as well as to better understand its upstream regulation. APPROACH AND RESULTS: By comparing histopathological specimens of SARS-CoV-2 with influenza-affected lungs, we show that vascular neutrophil recruitment, NETosis, and subsequent immunothrombosis are typical features of severe COVID-19, but less prominent in influenza pneumonia. Activated neutrophils were typically found in physical association with monocytes. To explore this further, we combined clinical data of COVID-19 cases with comprehensive immune cell phenotyping and bronchoalveolar lavage fluid scRNA-seq data. We show that a HLADRlow CD9low monocyte population expands in severe COVID-19, which releases neutrophil chemokines in the lungs, and might in turn explain neutrophil expansion and pulmonary recruitment in the late stages of severe COVID-19. CONCLUSIONS: Our data underline an innate immune cell axis causing vascular inflammation and immunothrombosis in severe SARS-CoV-2 infection.


COVID-19/immunology , Immunity, Innate , Influenza, Human/immunology , Lung/immunology , Neutrophils/immunology , Thrombosis/immunology , Vasculitis/immunology , COVID-19/diagnosis , COVID-19/virology , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Lung/pathology , Lung/virology , Neutrophils/virology , Predictive Value of Tests , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Thrombosis/virology , Vasculitis/virology
18.
BMC Gastroenterol ; 20(1): 424, 2020 Dec 14.
Article En | MEDLINE | ID: mdl-33317457

BACKGROUND: Infection with Entamoeba histolytica and associated complications are relatively rare in developed countries. The overall low prevalence in the Western world as well as the possibly prolonged latency period between infection with the causing pathogen and onset of clinical symptoms may delay diagnosis of and adequate treatment for amoebiasis. Amoebic liver abscess (ALA) is the most common extraintestinal manifestation of invasive amoebiasis. Pregnancy has been described as a risk factor for development of invasive amoebiasis and management of these patients is especially complex. CASE PRESENTATION: A 30-year-old Caucasian woman in early pregnancy presented to our emergency department with abdominal pain alongside elevated inflammatory markers and liver function tests. Travel history revealed multiple journeys to tropic and subtropic regions during the past decade and a prolonged episode of intermittently bloody diarrhea during a five month stay in Indonesia seven years prior to admission. Sonographic and magnetic resonance imaging revealed a 5 × 4 cm hepatic abscess. After ultrasound-guided transcutaneous liver drainage, both abscess fluids and blood cultures showed neither bacterial growth nor microscopic signs of parasitic disease. Serological testing confirmed an infection with Entamoeba histolytica, which was treated with metronidazole, followed by eradication therapy with paromomycin. Subsequent clinical, laboratory and imaging follow-up exams showed regression of the ALA. In addition, the pregnancy completed without complications and a healthy baby boy was born 7 months after termination of treatment. CONCLUSIONS: This case of invasive amoebiasis in early pregnancy outside of endemic regions and several years after exposure demonstrates the importance of broad differential diagnostics in the context of liver abscesses. The complex interdisciplinary decisions regarding the choice of imaging techniques as well as interventional and antibiotic therapy in the context of pregnancy are discussed. Furthermore, we present possible explanations for pregnancy as a risk factor for an invasive course of amoebiasis.


Entamoeba histolytica , Entamoebiasis , Liver Abscess, Amebic , Adult , Female , Humans , Indonesia , Liver Abscess, Amebic/diagnosis , Liver Abscess, Amebic/drug therapy , Male , Metronidazole/therapeutic use , Pregnancy
19.
Circulation ; 142(12): 1176-1189, 2020 09 22.
Article En | MEDLINE | ID: mdl-32755393

BACKGROUND: Severe acute respiratory syndrome corona virus 2 infection causes severe pneumonia (coronavirus disease 2019 [COVID-19]), but the mechanisms of subsequent respiratory failure and complicating renal and myocardial involvement are poorly understood. In addition, a systemic prothrombotic phenotype has been reported in patients with COVID-19. METHODS: A total of 62 subjects were included in our study (n=38 patients with reverse transcriptase polymerase chain reaction-confirmed COVID-19 and n=24 non-COVID-19 controls). We performed histopathologic assessment of autopsy cases, surface marker-based phenotyping of neutrophils and platelets, and functional assays for platelet, neutrophil functions, and coagulation tests, as well. RESULTS: We provide evidence that organ involvement and prothrombotic features in COVID-19 are linked by immunothrombosis. We show that, in COVID-19, inflammatory microvascular thrombi are present in the lung, kidney, and heart, containing neutrophil extracellular traps associated with platelets and fibrin. Patients with COVID-19 also present with neutrophil-platelet aggregates and a distinct neutrophil and platelet activation pattern in blood, which changes with disease severity. Whereas cases of intermediate severity show an exhausted platelet and hyporeactive neutrophil phenotype, patients severely affected with COVID-19 are characterized by excessive platelet and neutrophil activation in comparison with healthy controls and non-COVID-19 pneumonia. Dysregulated immunothrombosis in severe acute respiratory syndrome corona virus 2 pneumonia is linked to both acute respiratory distress syndrome and systemic hypercoagulability. CONCLUSIONS: Taken together, our data point to immunothrombotic dysregulation as a key marker of disease severity in COVID-19. Further work is necessary to determine the role of immunothrombosis in COVID-19.


Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Respiratory Insufficiency/etiology , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/etiology , Blood Platelets/cytology , Blood Platelets/metabolism , Blood Platelets/pathology , COVID-19 , Case-Control Studies , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Extracellular Traps/metabolism , Humans , Kidney/pathology , Lung/pathology , Neutrophils/cytology , Neutrophils/metabolism , Neutrophils/pathology , Pandemics , Phenotype , Platelet Activation , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Respiratory Insufficiency/diagnosis , SARS-CoV-2 , Severity of Illness Index , Thrombosis/complications , Thrombosis/diagnosis
20.
Front Oncol ; 10: 919, 2020.
Article En | MEDLINE | ID: mdl-32587828

The DNA damage response (DDR) is a complex signaling network that is activated upon genotoxic stress. It determines cellular fate by either activating cell cycle arrest or initiating apoptosis and thereby ensures genomic stability. The Apoptosis Antagonizing Transcription Factor (AATF/Che-1), an RNA polymerase II-interacting transcription factor and known downstream target of major DDR kinases, affects DDR signaling by inhibiting p53-mediated transcription of pro-apoptotic genes and promoting cell cycle arrest through various pathways instead. Specifically, AATF was shown to inhibit p53 expression at the transcriptional level and repress its pro-apoptotic activity by direct binding to p53 protein and transactivation of anti-apoptotic genes. Solid and hematological tumors of various organs exploit this function by overexpressing AATF. Both copy number gains and high expression levels of AATF were associated with worse prognosis or relapse of malignant tumors. Recently, a number of studies have enabled insights into the molecular mechanisms by which AATF affects both DDR and proliferation. AATF was found to directly localize to sites of DNA damage upon laser ablation and interact with DNA repair proteins. In addition, depletion of AATF resulted in increased DNA damage and decrease of both proliferative activity and genotoxic tolerance. Interestingly, considering the role of ribosomal stress in the regulation of p53, more recent work established AATF as ribosomal RNA binding protein and enabled insights into its role as an important factor for rRNA processing and ribosome biogenesis. This Mini Review summarizes recent findings on AATF and its important role in the DDR, malignancy, and ribosome biogenesis.

...