Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Pharmacol Sci ; 44(2): 73-84, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36307252

RESUMEN

Synonymous gene recoding, the substitution of synonymous variants into the genetic sequence, has been used to overcome many production limitations in therapeutic development. However, the safety and efficacy of recoded therapeutics can be difficult to evaluate because synonymous codon substitutions can result in subtle, yet impactful changes in protein features and require sensitive methods for detection. Given that computational approaches have made significant leaps in recent years, we propose that machine-learning (ML) tools may be leveraged to assess gene-recoded therapeutics and foresee an opportunity to adapt codon contexts to enhance some powerful existing tools. Here, we examine how synonymous gene recoding has been used to address challenges in therapeutic development, explain the biological mechanisms underlying its effects, and explore the application of computational platforms to improve the surveillance of functional variants in therapeutic design.


Asunto(s)
Codón , Diseño de Fármacos , Terapéutica , Humanos , Codón/genética , Aprendizaje Automático
2.
J Natl Cancer Inst ; 114(8): 1072-1094, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35477782

RESUMEN

Once called "silent mutations" and assumed to have no effect on protein structure and function, synonymous variants are now recognized to be drivers for some cancers. There have been significant advances in our understanding of the numerous mechanisms by which synonymous single nucleotide variants (sSNVs) can affect protein structure and function by affecting pre-mRNA splicing, mRNA expression, stability, folding, micro-RNA binding, translation kinetics, and co-translational folding. This review highlights the need for considering sSNVs in cancer biology to gain a better understanding of the genetic determinants of human cancers and to improve their diagnosis and treatment. We surveyed the literature for reports of sSNVs in cancer and found numerous studies on the consequences of sSNVs on gene function with supporting in vitro evidence. We also found reports of sSNVs that have statistically significant associations with specific cancer types but for which in vitro studies are lacking to support the reported associations. Additionally, we found reports of germline and somatic sSNVs that were observed in numerous clinical studies and for which in silico analysis predicts possible effects on gene function. We provide a review of these investigations and discuss necessary future studies to elucidate the mechanisms by which sSNVs disrupt protein function and play a role in tumorigeneses, cancer progression, and treatment efficacy. As splicing dysregulation is one of the most well-recognized mechanisms by which sSNVs impact protein function, we also include our own in silico analysis for predicting which sSNVs may disrupt pre-mRNA splicing.


Asunto(s)
Neoplasias , Precursores del ARN , Humanos , Neoplasias/genética , Neoplasias/terapia , Polimorfismo de Nucleótido Simple , Resultado del Tratamiento
3.
Kidney Int ; 95(1): 149-159, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30470436

RESUMEN

Fabry disease results from loss of activity of the lysosomal enzyme α-galactosidase A (GLA), leading to the accumulation of globoseries glycosphingolipids in vascular endothelial cells. Thrombosis and stroke are life-threatening complications of Fabry disease; however, the mechanism of the vasculopathy remains unclear. We explored the relationship between GLA deficiency and endothelial cell von Willebrand factor (VWF) secretion in in vivo and in vitro models of Fabry disease. Plasma VWF was significantly higher at two months and increased with age in Gla-null compared to wild-type mice. Disruption of GLA in a human endothelial cell line by siRNA and CRISPR/Cas9 resulted in a 3-fold and 5-fold increase in VWF secretion, respectively. The increase in VWF levels was associated with decreased endothelial nitric oxide synthase (eNOS) activity in both in vitro models. Pharmacological approaches that increase nitric oxide bioavailability or decrease reactive oxygen species completely normalized the elevated VWF secretion in GLA deficient cells. In contrast, the abnormality was not readily reversed by recombinant human GLA or by inhibition of glycosphingolipid synthesis with eliglustat. These results suggest that GLA deficiency promotes VWF secretion through eNOS dysregulation, which may contribute to the vasculopathy of Fabry disease.


Asunto(s)
Enfermedad de Fabry/patología , alfa-Galactosidasa/metabolismo , Factor de von Willebrand/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Enfermedad de Fabry/genética , Glucosiltransferasas/antagonistas & inhibidores , Glucosiltransferasas/metabolismo , Glicoesfingolípidos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pirrolidinas/farmacología , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , alfa-Galactosidasa/genética
4.
J Cardiovasc Pharmacol ; 61(3): 233-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23188132

RESUMEN

Reactive oxygen species are a key mediator of myocardial reperfusion injury. Endogenous cellular defenses against reactive oxygen species often become overwhelmed after ischemia and reperfusion. Therefore, exogenous supplementation of various antioxidant compounds has been hypothesized to protect against reperfusion. Reduced glutathione (GSH) is an important endogenous antioxidant that affords protection against oxidative damage. Oral administration of GSH is limited due to poor gastrointestinal absorption. A liposomal preparation of glutathione (lipGSH) capable of oral administration was investigated for its ability to attenuate tissue injury and increase myocardial glutathione levels in an isolated heart model of reperfusion injury. Male, New Zealand white rabbits were assigned randomly among 4 groups as follows: control and daily oral administration of lipGSH for 3, 7, or 14 days. At completion of the dosing regimen, hearts were harvested and perfused in a retrograde manner with the use of a Langendorff apparatus. The hearts were subjected to 30 minutes of global ischemia followed by 60 minutes of reperfusion. Hearts from lipGSH-treated rabbits exhibited better recovery of left ventricular contractile function during reperfusion and had attenuated oxidative damage. Furthermore, hearts from lipGSH-treated animals had increased myocardial tissue levels of GSH demonstrating effective absorption of lipGSH.


Asunto(s)
Antioxidantes/administración & dosificación , Cardiotónicos/administración & dosificación , Suplementos Dietéticos , Glutatión/administración & dosificación , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Animales , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Cardiotónicos/metabolismo , Cardiotónicos/uso terapéutico , Glutatión/metabolismo , Glutatión/uso terapéutico , Técnicas In Vitro , Absorción Intestinal , Peroxidación de Lípido , Liposomas , Masculino , Malondialdehído/metabolismo , Contracción Miocárdica , Isquemia Miocárdica/fisiopatología , Estrés Oxidativo , Perfusión , Conejos , Distribución Aleatoria , Factores de Tiempo , Troponina I/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA