Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 14(1): 14325, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906906

RESUMEN

Diabetic retinopathy (DR) is a multifactorial disease displaying vascular-associated pathologies, including vascular leakage and neovascularization, ultimately leading to visual impairment. However, animal models accurately reflecting these pathologies are lacking. Vascular endothelial growth factor A (VEGF-A) is an important factor in the development of micro- and macro-vascular pathology in DR. In this study, we evaluated the feasibility of using a cumate-inducible lentivirus (LV) mediated expression of vegf-a to understand DR pathology in vitro and in vivo. Retinal pigment epithelial cells (ARPE-19) were transduced with cumate-inducible LV expressing vegf-a, with subsequent analysis of vegf-a expression and its impact on cell proliferation, viability, motility, and permeability. Cumate tolerability in adult Wistar rat eyes was assessed as an initial step towards a potential DR animal model development, by administering cumate via intravitreal injections (IVT) and evaluating consequent effects by spectral domain optical coherence tomography (SD-OCT), flash electroretinography (fERG), ophthalmic examination (OE), and immunohistochemistry. Transduction of ARPE-19 cells with cumate-inducible LV resulted in ~ 2.5-fold increase in vegf-a mRNA and ~ threefold increase in VEGF-A protein secretion. Transduced cells displayed enhanced cell proliferation, viability, permeability, and migration in tube-like structures. However, IVT cumate injections led to apparent retinal toxicity, manifesting as retinal layer abnormalities, haemorrhage, vitreous opacities, and significant reductions in a- and b-wave amplitudes, along with increased microglial activation and reactive gliosis. In summary, while cumate-inducible LV-mediated vegf-a expression is valuable for in vitro mechanistic studies in cellular drug discovery, its use is not a feasible approach to model DR in in vivo studies due to cumate-induced retinal toxicity.


Asunto(s)
Retinopatía Diabética , Lentivirus , Epitelio Pigmentado de la Retina , Factor A de Crecimiento Endotelial Vascular , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Lentivirus/genética , Ratas , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Humanos , Ratas Wistar , Proliferación Celular , Modelos Animales de Enfermedad , Línea Celular , Inyecciones Intravítreas , Masculino , Movimiento Celular , Supervivencia Celular , Tomografía de Coherencia Óptica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38935528

RESUMEN

Purpose: Antibody-drug conjugates (ADCs) are a relatively recent advance in the delivery of chemotherapeutics that improve targeting of cytotoxic agents. However, despite their antitumor activity, severe ocular adverse effects, including vision loss, have been reported for several ADCs. The nonspecific uptake of ADCs into human corneal epithelial cells (HCECs) and their precursors via macropinocytosis has been proposed to be the primary mechanism of ocular toxicity. In this study, we evaluated the ability of a novel polymer, poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), to decrease the ADC rituximab-mc monomethylauristatin F (MMAF) (RIX) uptake into human corneal epithelial (HCE-T) cells. Methods: HCE-T cells were exposed to increasing concentrations of RIX to determine inhibition of cell proliferation. HCE-T cells were treated with PLL-g-PEG, the macropinocytosis inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA), or vehicle. After 30 min of incubation, RIX was added. ADC was detected by fluorescent anti-human immunoglobulin G and fluorescently conjugated dextran as viewed by microscopy. Results: RIX caused dose-dependent inhibition of HCE-T cell proliferation. EIPA significantly reduced RIX uptake and decreased macropinocytosis as assessed by direct quantification of RIX using a fluorescently conjugated anti-human antibody as well as quantification of macropinocytosis using fluorescently conjugated dextran. PLL-g-PEG resulted in a dose-dependent inhibition of RIX uptake with half-maximal inhibitory concentrations of 0.022%-0.023% PLL-g-PEG. Conclusion: The data show PLL-g-PEG to be a potent inhibitor of RIX uptake by corneal epithelial cells and support its use as a novel therapeutic approach for the prevention of ocular adverse events associated with ADC therapy.

3.
Exp Eye Res ; 240: 109813, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331016

RESUMEN

Glaucoma is a multifactorial progressive ocular pathology that manifests clinically with damage to the optic nerve (ON) and the retina, ultimately leading to blindness. The optic nerve head (ONH) shows the earliest signs of glaucoma pathology, and therefore, is an attractive target for drug discovery. The goal of this study was to elucidate the effects of reactive astrocytosis on the elastin metabolism pathway in primary rat optic nerve head astrocytes (ONHA), the primary glial cell type in the unmyelinated ONH. Following exposure to static equibiaxial mechanical strain, we observed prototypic molecular and biochemical signatures of reactive astrocytosis that were associated with a decrease in lysyl oxidase like 1 (Loxl1) expression and a concomitant decrease in elastin (Eln) gene expression. We subsequently investigated the role of Loxl1 in reactive astrocytosis by generating primary rat ONHA cultures with ∼50% decreased Loxl1 expression. Our results suggest that reduced Loxl1 expression is sufficient to elicit molecular signatures of elastinopathy in ONHA. Astrocyte derived exosomes (ADE) significantly increased the length of primary neurites of primary neurons in vitro. In contrast, ADE from Loxl1-deficient ONHA were deficient of trophic effects on neurite outgrowth in vitro, positing that Loxl1 dysfunction and the ensuing impaired elastin synthesis during reactive astrocytosis in the ONH may contribute to impaired neuron-glia signaling in glaucoma. Our data support a role of dysregulated Loxl1 function in eliciting reactive astrocytosis in glaucoma subtypes associated with increased IOP, even in the absence of genetic polymorphisms in LOXL1 typically associated with exfoliation glaucoma. This suggests the need for a paradigm shift toward considering lysyl oxidase activity and elastin metabolism and signaling as contributors to an altered secretome of the ONH that may lead to the progression of glaucomatous changes. Future research is needed to investigate cargo of exosomes in the context of reactive astrocytosis and identify the pathways leading to the observed transcriptome changes during reactive astrocytosis.


Asunto(s)
Exosomas , Glaucoma , Disco Óptico , Ratas , Animales , Disco Óptico/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Astrocitos/metabolismo , Exosomas/metabolismo , Gliosis/metabolismo , Glaucoma/metabolismo , Elastina/genética , Inflamación/metabolismo
4.
Life (Basel) ; 13(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38137838

RESUMEN

Wet age-related macular degeneration (wAMD) is a chronic inflammation-associated neurodegenerative disease affecting the posterior part of the eye in the aging population. Aging results in the reduced functionality of cells and tissues, including the cells of the retina. Initiators of a chronic inflammatory and pathologic state in wAMD may be a result of the accumulation of inevitable metabolic injuries associated with the maintenance of tissue homeostasis from a young age to over 50. Apart from this, risk factors like smoking, genetic predisposition, and failure to repair the injuries that occur, alongside attempts to rescue the hypoxic outer retina may also contribute to the pathogenesis. Aging of the immune system (immunosenescence) and a compromised outer blood retinal barrier (BRB) result in the exposure of the privileged milieu of the retina to the systemic immune system, further increasing the severity of the disease. When immune-privileged sites like the retina are under pathological stress, certain age- and disease-related conditions may necessitate assistance from cells distant from the resident ones to help restore the functionality of the tissue. As a necessary part of tissue repair, inflammation is a major response to disease and recruits immune cells to the site of damage. We suspect that the specific reparative inflammatory responses are controlled by an autoantigen-T cell-mediated mechanism, a process that may be hindered in wAMD.

5.
J Ocul Pharmacol Ther ; 39(5): 303-316, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37253141

RESUMEN

Purpose: Clinical data suggest that alcohol use is associated with the development of signs and symptoms of dry eye disease. However, preclinical data investigating ocular toxicity after dietary alcohol consumption are lacking. In this study, we investigated the effects of alcohol on the ocular surface, in human corneal epithelial cells (HCE-T) in vitro and in C57BL/6JRj mice in vivo. Methods: HCE-T were exposed to clinically relevant doses of ethanol. To determine the effects of dietary alcohol consumption in vivo, wild-type mice were administered the Lieber-DeCarli liquid diet (5% vol/vol ethanol or isocaloric control) for 10 days ad libitum. Corneal fluorescein staining was performed to assess ocular surface damage. Histopathological and gene expression studies were performed on cornea and lacrimal gland tissue. Results: Sublethal doses of ethanol (0.01%-0.5%) resulted in a dose-dependent increase of cellular oxidative stress in corneal epithelial cells and a significant increase in NFE2L2 and downstream antioxidant gene expression, as well as an increase in NFκB signaling; short-term exposure (0.5%, 4 h) triggered significant corneal epithelial cell barrier breakdown. Exposure to the alcohol-containing diet caused a 3-fold increase in corneal fluorescein staining, with no effect on tear volumes. Corneal thickness was significantly reduced in the alcohol diet group, and corneal tissue revealed dysregulated antioxidant and NFκB signaling. Our data provide the first published evidence that alcohol exposure causes ocular toxicity in mice. Conclusions: Our results are consistent with clinical studies linking past alcohol consumption to signs of ocular surface disease.


Asunto(s)
Antioxidantes , Síndromes de Ojo Seco , Humanos , Ratones , Animales , Antioxidantes/farmacología , Neuropatía Óptica Tóxica/patología , Ratones Endogámicos C57BL , Córnea , Estrés Oxidativo , Síndromes de Ojo Seco/metabolismo , Lágrimas/metabolismo , Fluoresceína/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Etanol/toxicidad , Dieta
6.
J Ocul Pharmacol Ther ; 38(4): 294-304, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35384749

RESUMEN

Purpose: Particulate matter (PM) is a primary cause for the development of acute and chronic dry eye disease, especially irritant-induced conjunctivitis. The purpose of the present study was to determine the effects of fine atmospheric PM on the rabbit ocular surface, and determine the protective effects of a synthetic antioxidant, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), in vitro and in vivo. Methods: Rabbit corneal epithelial cells (SIRC) were exposed to increasing concentrations of PM to determine the effects on cell motility and viability. The in vivo effects of topically instilled PM were tested in New Zealand White rabbits. Comprehensive ophthalmic exams and corneal fluorescein staining were performed. Results: Exposure to PM resulted in dose-dependent cell death and impaired cellular motility; Mn-TM-2-PyP protected against PM-induced cytotoxicity and significantly increased SIRC cell motility. In vivo, exposure to PM (5 mg/ml, topical, 3 times daily for 7 days) resulted in signs of dry eye, notably hyperemia, increased corneal fluorescein staining, and decreased tear volumes. Mn-TM-2-PyP significantly improved hyperemia and corneal fluorescein readouts but had no effect on tear production. Lifitegrast (Xiidra®) showed similar pharmacologic efficacy to Mn-TM-2-PyP. Conclusion: Overall, these data provide evidence that PM induces phenotypes of ocular surface disease responsive to antioxidant and immunosuppressant therapy. To our knowledge this is the first report of a large animal model to study PM-induced ocular surface disease. The present work provides standardized experimental paradigms for the comprehensive in vitro and in vivo testing of novel therapeutic approaches targeting PM-induced conjunctivitis and dry-eye.


Asunto(s)
Conjuntivitis , Síndromes de Ojo Seco , Hiperemia , Porfirinas , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Córnea , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/inducido químicamente , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Fluoresceína/metabolismo , Hiperemia/metabolismo , Soluciones Oftálmicas/uso terapéutico , Material Particulado/metabolismo , Material Particulado/toxicidad , Porfirinas/uso terapéutico , Conejos , Lágrimas/metabolismo
7.
J Ocul Pharmacol Ther ; 38(4): 271-286, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35325558

RESUMEN

The streptozotocin (STZ)-induced rodent model is one of the most commonly employed models in preclinical drug discovery for diabetic retinopathy (DR). However, standardization and validation of experimental readouts are largely lacking. The aim of this systematic review was to identify and compare the most useful readouts of STZ-induced DR and provide recommendations for future study design based on our findings. We performed a systematic search using 2 major databases, PubMed and EMBASE. Only articles describing STZ-induced DR describing both functional and structural readouts were selected. We also assessed the risk of bias and analyzed qualitative data in the selected studies. We identified 21 studies that met our inclusion/exclusion criteria, using either rats or mice and study periods of 2 to 24 weeks. Glucose level thresholds used to define hyperglycemia were inconsistent between studies, however, most studies used either 250 or 300.6 mg/dL as a defining criterion for hyperglycemia. All included studies performed electroretinography (ERG) and reported a reduction in a-, b-, or c-wave and/or oscillatory potential amplitudes. Spectral-domain optical coherence tomography and fluorescein angiography, as well as immunohistochemical and histopathological analyses showed reductions in retinal thickness, vascular changes, and presence of inflammation. Risk of bias assessment showed that all studies had a high risk of bias due to lack of reporting or correctly following procedures. Our systematic review highlights that ERG represents the most consistent functional readout in the STZ model. However, due to the high risk of bias, caution must be used when interpreting these studies.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Hiperglucemia , Animales , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/patología , Electrorretinografía , Hiperglucemia/patología , Ratones , Ratas , Retina/patología , Roedores , Estreptozocina , Relación Estructura-Actividad
8.
Cell Mol Life Sci ; 79(3): 152, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35212809

RESUMEN

ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5'-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local "purinergic junctions" with CD39low/CD73- neuronal cell bodies and CD39high/CD73- retinal blood vessels. The relevance of the CD73-adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Luz , Retina/efectos de la radiación , 5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/genética , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/farmacología , Adenosina Trifosfato/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Apirasa/genética , Apirasa/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microglía/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/metabolismo
9.
Bioengineering (Basel) ; 8(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940343

RESUMEN

Pro-angiogenic and anti-angiogenic peptide hydrogels were evaluated against the standard of care wet age-related macular degeneration (AMD) therapy, Aflibercept (Eylea®). AMD was modeled in rats (laser-induced choroidal neovascularization (CNV) model), where the contralateral eye served as the control. After administration of therapeutics, vasculature was monitored for 14 days to evaluate leakiness. Rats were treated with either a low or high concentration of anti-angiogenic peptide hydrogel (0.02 wt% 8 rats, 0.2 wt% 6 rats), or a pro-angiogenic peptide hydrogel (1.0 wt% 7 rats). As controls, six rats were treated with commercially available Aflibercept and six with sucrose solution (vehicle control). Post lasering, efficacy was determined over 14 days via fluorescein angiography (FA) and spectral-domain optical coherence tomography (SD-OCT). Before and after treatment, the average areas of vascular leak per lesion were evaluated as well as the overall vessel leakiness. Unexpectedly, treatment with pro-angiogenic peptide hydrogel showed significant, immediate improvement in reducing vascular leak; in the short term, the pro-angiogenic peptide performed better than anti-angiogenic peptide hydrogel and was comparable to Aflibercept. After 14 days, both the pro-angiogenic and anti-angiogenic peptide hydrogels show a trend of improvement, comparable to Aflibercept. Based on our results, both anti-angiogenic and pro-angiogenic peptide hydrogels may prove good therapeutics in the future to treat wet AMD over a longer-term treatment period.

10.
Pharmaceutics ; 13(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34575438

RESUMEN

Oxidative stress is a known contributor to the progression of dry eye disease pathophysiology, and previous studies have shown that antioxidant intervention is a promising therapeutic approach to reduce the disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II antioxidant enzymes. In this study, xanthohumol prevented tert-butyl hydroperoxide-induced loss of cell viability in human corneal epithelial (HCE-T) cells in a dose-dependent manner and resulted in a significant increase in expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of phase II endogenous antioxidant enzymes. Xanthohumol-encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against oxidative stress in vitro, and significantly reduced ocular surface damage and oxidative stress-associated DNA damage in corneal epithelial cells in the mouse desiccating stress/scopolamine model for dry eye disease in vivo. PLGA NP represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formulations with the goal to minimize instillation frequency may represent future therapeutic options for dry eye disease and related ocular surface disease.

11.
Cancer Res ; 80(19): 4224-4232, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32747363

RESUMEN

Progression on therapy in non-small cell lung carcinoma (NSCLC) is often evaluated radiographically, however, image-based evaluation of said therapies may not distinguish disease progression due to intrinsic tumor drug resistance or inefficient tumor penetration of the drugs. Here we report that the inhibition of mutated EGFR promotes the secretion of a potent vasoconstrictor, endothelin-1 (EDN1), which continues to increase as the cells become resistant with a mesenchymal phenotype. As EDN1 and its receptor (EDNR) is linked to cancer progression, EDNR-antagonists have been evaluated in several clinical trials with disappointing results. These trials were based on a hypothesis that the EDN1-EDNR axis activates the MAPK-ERK signaling pathway that is vital to the cancer cell survival; the trials were not designed to evaluate the impact of tumor-derived EDN1 in modifying tumor microenvironment or contributing to drug resistance. Ectopic overexpression of EDN1 in cells with mutated EGFR resulted in poor drug delivery and retarded growth in vivo but not in vitro. Intratumoral injection of recombinant EDN significantly reduced blood flow and subsequent gefitinib accumulation in xenografted EGFR-mutant tumors. Furthermore, depletion of EDN1 or the use of endothelin receptor inhibitors bosentan and ambrisentan improved drug penetration into tumors and restored blood flow in tumor-associated vasculature. Correlatively, these results describe a simplistic endogenous yet previously unrealized resistance mechanism inherent to a subset of EGFR-mutant NSCLC to attenuate tyrosine kinase inhibitor delivery to the tumors by limiting drug-carrying blood flow and the drug concentration in tumors. SIGNIFICANCE: EDNR antagonists can be repurposed to improve drug delivery in VEGFA-secreting tumors, which normally respond to TKI treatment by secreting EDN1, promoting vasoconstriction, and limiting blood and drug delivery.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Endotelina-1/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Disponibilidad Biológica , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Endotelina-1/genética , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacocinética , Humanos , Neoplasias Pulmonares/genética , Ratones , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Vasoconstricción/efectos de los fármacos , Vasoconstricción/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Antioxidants (Basel) ; 9(4)2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316287

RESUMEN

Optic nerve head astrocytes are the specialized glia cells that provide structural and trophic support to the optic nerve head. In response to cellular injury, optic nerve head astrocytes undergo reactive astrocytosis, the process of cellular activation associated with cytoskeletal remodeling, increases in the rate of proliferation and motility, and the generation of Reactive Oxygen Species. Antioxidant intervention has previously been proposed as a therapeutic approach for glaucomatous optic neuropathy, however, little is known regarding the response of optic nerve head astrocytes to antioxidants under physiological versus pathological conditions. The goal of this study was to determine the effects of three different antioxidants, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), resveratrol and xanthohumol in primary optic nerve head astrocytes. Effects on the expression of the master regulator nuclear factor erythroid 2-related factor 2 (Nrf2), the antioxidant enzyme, manganese-dependent superoxide dismutase 2 (SOD2), and the pro-oxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4), were determined by quantitative immunoblotting. Furthermore, efficacy in preventing chemically and reactive astrocytosis-induced increases in cellular oxidative stress was quantified using cell viability assays. The results were compared to the effects of the prototypic antioxidant, Trolox. Antioxidants elicited highly differential changes in the expression levels of Nrf2, SOD2, and NOX4. Notably, Mn-TM-2-PyP increased SOD2 expression eight-fold, while resveratrol increased Nrf2 expression three-fold. In contrast, xanthohumol exerted no statistically significant changes in expression levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) uptake and lactate dehydrogenase (LDH) release assays were performed to assess cell viability after chemically and reactive astrocytosis-induced oxidative stress. Mn-TM-2-PyP exerted the most potent glioprotection by fully preventing the loss of cell viability, whereas resveratrol and xanthohumol partially restored cell viability. Our data provide the first evidence for a well-developed antioxidant defense system in optic nerve head astrocytes, which can be pharmacologically targeted by different classes of antioxidants.

13.
Invest Ophthalmol Vis Sci ; 60(10): 3613-3624, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31433458

RESUMEN

Purpose: POAG is a progressive optic neuropathy that is currently the leading cause of irreversible blindness worldwide. While the underlying cause of POAG remains unclear, TGF-ß2-dependent remodeling of the extracellular matrix (ECM) within the trabecular meshwork (TM) microenvironment is considered an early pathologic consequence associated with impaired aqueous humor (AH) outflow and elevated IOP. Early studies have also demonstrated markedly elevated levels of oxidative stress markers in AH from POAG patients along with altered expression of antioxidant defenses. Here, using cultured primary or transformed human TM cells, we investigated the role oxidative stress plays at regulating TGF-ß2-mediated remodeling of the ECM. Methods: Primary or transformed (GTM3) human TM cells conditioned in serum-free media were incubated in the absence or presence of TGF-ß2 and relative changes in intracellular reactive oxygen species (ROS) were measured using oxidation-sensitive fluorogenic dyes CellROX green or 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA). TGF-ß2-mediated changes in the content of connective tissue growth factor (CTGF) and collagen types 1α1 (COL1A1) and 4α1 (COL4A1) mRNA or collagens I and IV isoform proteins were determined in the absence or presence of mitochondrial-targeted antioxidants (XJB-5-131 or MitoQ) and quantified by quantitative PCR or by immunoblot and immunocytochemistry. Smad-dependent canonic signaling was determined by immunoblot, whereas Smad-dependent transcriptional activity was quantified using a Smad2/3-responsive SBE-luciferase reporter assay. Results: Primary or transformed human TM cells cultured in the presence of TGF-ß2 (5 ng/mL; 2 hours) exhibited marked increases in CellROX or fluorescein fluorescence. Consistent with previous reports, challenging cultured human TM cells with TGF-ß2 elicited measurable increases in regulated Smad2/3 signaling as well as increases in CTGF, COL1A1, and COL4A1 mRNA and collagen protein content. Pretreating human TM cells with mitochondrial-targeted antioxidants XJB-5-131 (10 µM) or MitoQ (10 nM) attenuated TGF-ß2-mediated changes in Smad-dependent transcriptional activity. Conclusions: The multifunctional profibrotic cytokine TGF-ß2 elicits a marked increase in oxidative stress in human TM cells. Mitochondrial-targeted antioxidants attenuate TGF-ß2-mediated changes in Smad-dependent transcriptional activity, including marked reductions in CTGF and collagen isoform gene and protein expression. These findings suggest that mitochondrial-targeted antioxidants, when delivered directly to the TM, exhibit potential as a novel strategy by which to slow the progression of TGF-ß2-mediated remodeling of the ECM within the TM.


Asunto(s)
Antioxidantes/farmacología , Mitocondrias/efectos de los fármacos , Transducción de Señal/fisiología , Malla Trabecular/efectos de los fármacos , Factor de Crecimiento Transformador beta2/metabolismo , Línea Celular Transformada , Células Cultivadas , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo IV/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Óxidos N-Cíclicos/farmacología , Humanos , Immunoblotting , Inmunohistoquímica , Compuestos Organofosforados/farmacología , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Malla Trabecular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
14.
Neurochem Int ; 129: 104497, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251945

RESUMEN

Chronic alcoholism promotes brain damage that impairs memory and cognition. High binge alcohol levels in adult rats also cause substantial neurodamage to memory-linked regions, notably, the hippocampus (HC) and entorhinal cortex (ECX). Concurrent with neurodegeneration, alcohol elevates poly (ADP-ribose) polymerase-1 (PARP-1) and cytosolic phospholipase A2 (cPLA2) levels. PARP-1 triggers necrosis when excessively activated, while cPLA2 liberates neuroinflammatory ω-6 arachidonic acid. Inhibitors of PARP exert in vitro neuroprotection while suppressing cPLA2 elevations in alcohol-treated HC-ECX slice cultures. Here, we examined in vivo neuroprotection and cPLA2 suppression by the PARP inhibitor, veliparib, in a recognized adult rat model of alcohol-binging. Adult male rats received Vanilla Ensure containing alcohol (ethanol, 7.1 ±â€¯0.3 g/kg/day), or control (dextrose) ±â€¯veliparib (25 mg/kg/day), by gavage 3x daily for 4 days. Rats were sacrificed on the morning after the final binge. HC and ECX neurodegeneration was assessed in fixed sections by Fluoro-Jade B (FJB) staining. Dorsal HC, ventral HC, and ECX cPLA2 levels were quantified by immunoblotting. Like other studies using this model, alcohol binges elevated FJB staining in the HC (dentate gyrus) and ECX, indicating neurodegeneration. Veliparib co-treatment significantly reduced dentate gyrus and ECX neurodegeneration by 79% and 66%, respectively. Alcohol binges increased cPLA2 in the ventral HC by 34% and ECX by 72%, which veliparib co-treatment largely prevented. Dorsal HC cPLA2 levels remained unaffected by alcohol binges, consistent with negligible FJB staining in this brain region. These in vivo results support an emerging key role for PARP in binge alcohol-induced neurodegeneration and cPLA2-related neuroinflammation.


Asunto(s)
Trastornos del Sistema Nervioso Inducidos por Alcohol/prevención & control , Bencimidazoles/uso terapéutico , Proteínas del Tejido Nervioso/biosíntesis , Fosfolipasas A2 Citosólicas/biosíntesis , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Trastornos del Sistema Nervioso Inducidos por Alcohol/tratamiento farmacológico , Trastornos del Sistema Nervioso Inducidos por Alcohol/enzimología , Animales , Bencimidazoles/farmacología , Consumo Excesivo de Bebidas Alcohólicas , Giro Dentado/efectos de los fármacos , Giro Dentado/enzimología , Giro Dentado/patología , Modelos Animales de Enfermedad , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/enzimología , Corteza Entorrinal/patología , Inducción Enzimática/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/genética , Fosfolipasas A2 Citosólicas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratas , Ratas Sprague-Dawley
15.
Ocul Surf ; 17(2): 257-264, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30807830

RESUMEN

PURPOSE: To determine the efficacy of the superoxide dismutase mimetic, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin (Mn-TM-2-PyP), in vitro in human corneal epithelial (HCE-T) cells and in vivo in a preclinical mouse model for dry-eye disease (DED). METHODS: In vitro, HCE-T cultures were exposed either to tert-butylhydroperoxide (tBHP) to generate oxidative stress or to hyperosmolar conditions modeling cellular stress during DED. Cells were pre-treated with Mn-TM-2-PyP or vehicle. Mn-TM-2-PyP permeability across stratified HCE-T cells was assayed. In vivo, Mn-TM-2-PyP (0.1% w/v in saline) was delivered topically as eye drops in a desiccating stress/scopolamine model for DED. Preclinical efficacy was compared to untreated, vehicle- and ophthalmic cyclosporine emulsion-treated mice. RESULTS: Mn-TM-2-PyP protected HCE-T cells in a dose-dependent manner against tBHP-induced oxidative stress as determined by calculating the IC50 for tBHP in the resazurin, MTT and lactate dehydrogenase release cell viability assays. Mn-TM-2-PyP did not protect HCE-T cells from hyperosmolar insult. Its permeability coefficient across a barrier of HCE-T cells was 1.1 ±â€¯0.05 × 10-6 cm/s and the mass balance was 62 ±â€¯0.6%. In vivo, topical dosing with Mn-TM-2-PyP resulted in a statistically significant reduction of corneal fluorescein staining, similar to ophthalmic cyclosporine emulsion. Furthermore, Mn-TM-2-PyP significantly reduced leukocyte infiltration into lacrimal glands and prevented degeneration of parenchymal tissue. No protective effect against loss of conjunctival goblet cells was observed. Notably, Mn-TM-2-PyP did not produce ocular toxicity when administered topically. DISCUSSION: Our data suggest that Mn-TM-2-PyP, a prototypic synthetic metalloporphyrin compound with potent catalytic antioxidant activity, can improve signs of DED in vivo by reducing oxidative stress in corneal epithelial cells.


Asunto(s)
Síndromes de Ojo Seco/tratamiento farmacológico , Células Caliciformes/patología , Metaloporfirinas/administración & dosificación , Estrés Oxidativo , Animales , Antioxidantes , Recuento de Células , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología , Células Caliciformes/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Soluciones Oftálmicas/administración & dosificación , Índice de Severidad de la Enfermedad
16.
Cell Death Dis ; 10(3): 180, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792401

RESUMEN

Potassium ion channels are critical in the regulation of cell motility. The acquisition of cell motility is an essential parameter of cancer metastasis. However, the role of K+ channels in cancer metastasis has been poorly studied. High expression of the hG1 gene, which encodes for Kv11.1 channel associates with good prognosis in estrogen receptor-negative breast cancer (BC). We evaluated the efficacy of the Kv11.1 activator NS1643 in arresting metastasis in a triple negative breast cancer (TNBC) mouse model. NS1643 significantly reduces the metastatic spread of breast tumors in vivo by inhibiting cell motility, reprogramming epithelial-mesenchymal transition via attenuation of Wnt/ß-catenin signaling and suppressing cancer cell stemness. Our findings provide important information regarding the clinical relevance of potassium ion channel expression in breast tumors and the mechanisms by which potassium channel activity can modulate tumor biology. Findings suggest that Kv11.1 activators may represent a novel therapeutic approach for the treatment of metastatic estrogen receptor-negative BC. Ion channels are critical factor for cell motility but little is known about their role in metastasis. Stimulation of the Kv11.1 channel suppress the metastatic phenotype in TNBC. This work could represent a paradigm-shifting approach to reducing mortality by targeting a pathway that is central to the development of metastases.


Asunto(s)
Canal de Potasio ERG1/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias de la Mama Triple Negativas/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Cresoles/farmacología , Cresoles/uso terapéutico , Canal de Potasio ERG1/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Células MCF-7 , Ratones , Metástasis de la Neoplasia , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Trasplante Heterólogo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , beta Catenina/antagonistas & inhibidores , beta Catenina/genética
18.
Invest Ophthalmol Vis Sci ; 59(7): 3088-3093, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30025146

RESUMEN

Purpose: To determine the efficacy of trabodenoson, an adenosine mimetic with highly selective adenosine A1 receptor binding properties, in a preclinical mouse model for dry-eye disease. Methods: Dry-eye disease was induced in adult male C57BL/6 mice using a combination of desiccating environment and transdermal administration of scopolamine. Mice were treated concurrently and twice daily with either vehicle, 6% trabodenoson, or 0.05% cyclosporine (Restasis). Efficacy (P < 0.05 versus vehicle) was determined by clinical assessment of dry-eye symptoms using corneal fluorescein staining and tear volumes and histopathologically by quantifying lacrimal gland pathology and conjunctival goblet cells. Results: Twice-daily topical (ocular) administration of trabodenoson increased tear levels and reduced corneal fluorescein staining (P < 0.05) as compared with vehicle-treated eyes in a mouse model of dry-eye disease. Furthermore, significant infiltration of immune cells in the lacrimal gland and reduced number of mucin-producing conjunctival goblet cells were noted in both untreated and vehicle-treated eyes. Comparatively, trabodenoson treatment significantly reduced lacrimal gland infiltration and increased the number of goblet cells (P < 0.05 for both versus vehicle). These trabodenoson-related effects on lacrimal gland pathology and goblet cells were similar to or better than the effects observed with cyclosporine treatment. Conclusions: Topical ocular delivery of trabodenoson significantly improves the clinical and histopathological signs associated with dry-eye disease in mice. This improvement appears to be related to anti-inflammatory effects from targeting adenosine signaling and represents a novel therapeutic approach to develop for the management of dry-eye disease.


Asunto(s)
Modelos Animales de Enfermedad , Síndromes de Ojo Seco/tratamiento farmacológico , Queratoconjuntivitis Seca/tratamiento farmacológico , Nitratos/uso terapéutico , Agonistas del Receptor Purinérgico P1/uso terapéutico , Purinas/uso terapéutico , Administración Oftálmica , Animales , Conjuntiva/efectos de los fármacos , Células Caliciformes/efectos de los fármacos , Aparato Lagrimal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Lágrimas/fisiología , Resultado del Tratamiento
19.
J Vis Exp ; (131)2018 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-29443029

RESUMEN

Laser-induced choroidal neovascularization (CNV) is a well-established model to mimic the wet form of age-related macular degeneration (AMD). In this protocol, we aim to guide the reader not simply through the technical considerations of generating laser-induced lesions to trigger neovascular processes, but rather focus on the powerful information that can be obtained from multimodal longitudinal in vivo imaging throughout the follow-up period. The laser-induced mouse CNV model was generated by a diode laser administration. Multimodal in vivo imaging techniques were used to monitor CNV induction, progression and regression. First, spectral domain optical coherence tomography (SD-OCT) was performed immediately after the lasering to verify a break of Bruch's membrane. Subsequent in vivo imaging using fluorescein angiography (FA) confirmed successful damage of Bruch's membrane from serial images acquired at the choroidal level. Longitudinal follow-up of CNV proliferation and regression on days 5, 10, and 14 after the lasering was performed using both SD-OCT and FA. Simple and reliable grading of leaky CNV leasions from FA images is presented. Automated segmentation for measurement of total retinal thickness, combined with manual caliber application for measurement of retinal thickness at CNV sites, allow unbiased evaluation of the presence of edema. Finally, histological verification of CNV is performed using isolectin GS-IB4 staining on choroidal flatmounts. The staining is thresholded, and the isolectin-positive area is calculated with ImageJ. This protocol is especially useful in therapeutics studies requiring high-throughput-like screening of CNV pathology as it allows fast, multimodal, and reliable classification of CNV pathology and retinal edema. In addition, high resolution SD-OCT enables the recording of other pathological hallmarks, such as the accumulation of subretinal or intraretinal fluid. However, this method does not provide a possibility to automate CNV volume analysis from SD-OCT images, which has to be performed manually.


Asunto(s)
Neovascularización Coroidal/diagnóstico por imagen , Imagen Multimodal/métodos , Animales , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
20.
Oncotarget ; 9(3): 3321-3337, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29423049

RESUMEN

Potassium ion (K+) channels have been recently found to play a critical role in cancer biology. Despite that pharmacologic manipulation of ion channels is recognized as an important therapeutic approach, very little is known about the effects of targeting of K+ channels in cancer. In this study, we demonstrate that use of the Kv11.1 K+ channel activator NS1643 inhibits tumor growth in an in vivo model of breast cancer. Tumors exposed to NS1643 had reduced levels of proliferation markers, high expression levels of senescence markers, increased production of ROS and DNA damage compared to tumors of untreated mice. Importantly, mice treated with NS1643 did not exhibit significant cardiac dysfunction. In conclusion, pharmacological stimulation of Kv11.1 activity produced arrested TNBC-derived tumor growth by generating DNA damage and senescence without significant side effects. We propose that use of Kv11.1 channels activators could be considered as a possible pharmacological strategy against breast tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...