Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Open Biol ; 12(1): 210264, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35042401

RESUMEN

Autosomal recessive mutations in the PINK1 gene are causal for Parkinson's disease (PD). PINK1 encodes a mitochondrial localized protein kinase that is a master-regulator of mitochondrial quality control pathways. Structural studies to date have elaborated the mechanism of how mutations located within the kinase domain disrupt PINK1 function; however, the molecular mechanism of PINK1 mutations located upstream and downstream of the kinase domain is unknown. We have employed mutagenesis studies to define the minimal region of human PINK1 required for optimal ubiquitin phosphorylation, beginning at residue Ile111. Inspection of the AlphaFold human PINK1 structure model predicts a conserved N-terminal α-helical extension (NTE) domain forming an intramolecular interaction with the C-terminal extension (CTE), which we corroborate using hydrogen/deuterium exchange mass spectrometry of recombinant insect PINK1 protein. Cell-based analysis of human PINK1 reveals that PD-associated mutations (e.g. Q126P), located within the NTE : CTE interface, markedly inhibit stabilization of PINK1; autophosphorylation at Serine228 (Ser228) and Ubiquitin Serine65 (Ser65) phosphorylation. Furthermore, we provide evidence that NTE and CTE domain mutants disrupt PINK1 stabilization at the mitochondrial Translocase of outer membrane complex. The clinical relevance of our findings is supported by the demonstration of defective stabilization and activation of endogenous PINK1 in human fibroblasts of a patient with early-onset PD due to homozygous PINK1 Q126P mutations. Overall, we define a functional role of the NTE : CTE interface towards PINK1 stabilization and activation and show that loss of NTE : CTE interactions is a major mechanism of PINK1-associated mutations linked to PD.


Asunto(s)
Proteínas Quinasas , Ubiquitina , Activación Enzimática , Humanos , Fosforilación , Conformación Proteica en Hélice alfa , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(30): 14961-14970, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31296563

RESUMEN

O-GlcNAc transferase (OGT) is an X-linked gene product that is essential for normal development of the vertebrate embryo. It catalyses the O-GlcNAc posttranslational modification of nucleocytoplasmic proteins and proteolytic maturation of the transcriptional coregulator Host cell factor 1 (HCF1). Recent studies have suggested that conservative missense mutations distal to the OGT catalytic domain lead to X-linked intellectual disability in boys, but it is not clear if this is through changes in the O-GlcNAc proteome, loss of protein-protein interactions, or misprocessing of HCF1. Here, we report an OGT catalytic domain missense mutation in monozygotic female twins (c. X:70779215 T > A, p. N567K) with intellectual disability that allows dissection of these effects. The patients show limited IQ with developmental delay and skewed X-inactivation. Molecular analyses revealed decreased OGT stability and disruption of the substrate binding site, resulting in loss of catalytic activity. Editing this mutation into the Drosophila genome results in global changes in the O-GlcNAc proteome, while in mouse embryonic stem cells it leads to loss of O-GlcNAcase and delayed differentiation down the neuronal lineage. These data imply that catalytic deficiency of OGT could contribute to X-linked intellectual disability.


Asunto(s)
Dominio Catalítico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Mutación con Pérdida de Función , N-Acetilglucosaminiltransferasas/genética , Animales , Línea Celular , Drosophila , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Factor C1 de la Célula Huésped/metabolismo , Humanos , Discapacidad Intelectual/patología , Ratones , N-Acetilglucosaminiltransferasas/química , N-Acetilglucosaminiltransferasas/metabolismo , Neurogénesis , Mutación Puntual , Gemelos Monocigóticos
3.
J Biol Chem ; 291(23): 12003-13, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27059955

RESUMEN

Keratins 8/18 (K8/18) are phosphoglycoproteins and form the major intermediate filament network of simple epithelia. The three O-GlcNAcylation (Ser(29), Ser(30), and Ser(48)) and two phosphorylation (Ser(33) and Ser(52)) serine sites on K18 are well characterized. Both of these modifications have been reported to increase K18 solubility and regulate its filament organization. In this report, we investigated the site-specific interplay between these two modifications in regulating the functional properties of K18, like solubility, stability, and filament organization. An immortalized hepatocyte cell line (HHL-17) stably expressing site-specific single, double, and triple O-GlcNAc and phosphomutants of K18 were used to identify the site(s) critical for regulating these functions. Keratin 18 mutants where O-GlcNAcylation at Ser(30) was abolished (K18-S30A) exhibited reduced phosphorylation induced solubility, increased stability, defective filament architecture, and slower migration. Interestingly, K18-S30A mutants also showed loss of phosphorylation at Ser(33), a modification known to regulate the solubility of K18. Further to this, the K18 phosphomutant (K18-S33A) mimicked K18-S30A in its stability, filament organization, and cell migration. These results indicate that O-GlcNAcylation at Ser(30) promotes phosphorylation at Ser(33) to regulate the functional properties of K18 and also impact cellular processes like migration. O-GlcNAcylation and phosphorylation on the same or adjacent sites on most proteins antagonize each other in regulating protein functions. Here we report a novel, positive interplay between O-GlcNAcylation and phosphorylation at adjacent sites on K18 to regulate its fundamental properties.


Asunto(s)
Acetilglucosamina/metabolismo , Queratina-18/metabolismo , Serina/metabolismo , Acilación , Sitios de Unión/genética , Línea Celular , Movimiento Celular/genética , Fibronectinas/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Immunoblotting , Queratina-18/genética , Microscopía Confocal , Mutación Missense , Fosforilación , Serina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA