Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytother Res ; 38(3): 1381-1399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38217095

RESUMEN

Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.


Asunto(s)
Brassicaceae , Enfermedades del Sistema Nervioso , Humanos , Verduras/química , Brassicaceae/química , Dieta , Fitoquímicos
2.
3 Biotech ; 14(1): 9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38074289

RESUMEN

Global cerebral ischemia is commonly associated with neurological deficits, including cognitive and memory impairments. The present study aims to investigate the neuroprotective, cognitive, and memory enhancement effects of Tangeretin, a flavonoid against global cerebral ischemia in rats. Bilateral common carotid artery occlusion (BCCAO) and reperfusion injury method was used to induce global cerebral ischemia in rats. Motor, cognitive, and memory functions were evaluated using rotarod, grip strength, Y-maze, and Morris water maze. Further, acetylcholine esterase (AchE) enzyme activity, acetylcholine (Ach), oxidative stress markers (ROS, SOD, MDA, and CAT), inflammation (IL-6 and TNF-α), and apoptotic markers (cytochrome C, caspase 9, and caspase 3) in BCCAO rats were measured following Tangeretin (5,10, and 20 mg/kg, oral) treatment. Our findings show that Tangeretin treatment significantly improved cognition and memory by enhancing Ach levels through the amelioration of AchE enzyme activity in BCCAO rats. Moreover, Tangeretin exhibited neuroprotective effects through the mitigation of oxidative stress, inflammation, and apoptosis in the BCCAO rats. In summary, the current findings suggested that Tangeretin exhibited neuroprotection, cognitive and memory enhancement against global cerebral ischemia.

3.
Eur J Med Chem ; 259: 115670, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37515920

RESUMEN

Alzheimer's disease (AD) is a progressive brain disorder associated with slow loss of brain functions leading to memory failure and modest changes in behavior. The multifactorial neuropathological condition is due to a depletion of cholinergic neurons and accumulation of amyloid-beta (Aß) plaques. Recently, a multi-target-directed ligand (MTDL) strategy has emerged as a robust drug discovery tool to overcome current challenges. In this research work, we aimed to design and develop a library of triazole-bridged aryl adamantane analogs for the treatment of AD. All synthesized analogs were characterized and evaluated through various in vitro and in vivo biological studies. The optimal compounds 32 and 33 exhibited potent inhibitory activities against acetylcholinesterase (AChE) (32 - IC50 = 0.086 µM; 33 - 0.135 µM), and significant Aß aggregation inhibition (20 µM). N-methyl-d-aspartate (NMDA) receptor (GluN1-1b/GluN2B subunit combination) antagonistic activity of compounds 32 and 33 measured upon heterologous expression in Xenopus laevis oocytes showed IC50 values of 3.00 µM and 2.86 µM, respectively. The compounds possessed good blood-brain barrier permeability in the PAMPA assay and were safe for SH-SY5Y neuroblastoma (10 µM) and HEK-293 cell lines (30 µM). Furthermore, in vivo behavioral studies in rats demonstrated that both compounds improved cognitive and spatial memory impairment at a dose of 10 mg/kg oral administration. Together, our findings suggest triazole-bridged aryl adamantane as a promising new scaffold for the development of anti-Alzheimer's drugs.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Fármacos Neuroprotectores , Triazoles , Animales , Humanos , Ratas , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Diseño de Fármacos , Células HEK293 , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología
4.
Eur J Med Chem ; 182: 111613, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31437780

RESUMEN

Alzheimer's disease (AD) is associated with multifactorial neuropathological conditions, which include cholinergic deficit, amyloid-beta plaques formation, loss of neuronal plasticity and neuronal death. Treating such multifactorial conditions with a single target directed approach is considered to be inadequate. Accordingly, multi-target directed ligand (MTDL) strategy has been evolved as an auspicious approach for the treatment of AD. In light of that, a library of 2-substituted benzo[d]oxazol-5-amine derivatives (29-39; 86-107) was designed using the scaffold hopping guided MTDLs strategy, synthesized and evaluated through various in-vitro and in-vivo biological studies. The optimal compound 92 exhibited potent inhibitory activities against AChE (IC50 = 0.052 ±â€¯0.010 µM), BuChE (IC50 = 1.085 ±â€¯0.035 µM), and significant amyloid-beta aggregation (20 µM) inhibition. The compound possessed better blood-brain barrier permeability (Pe = 10.80 ±â€¯0.055 × 10-6 cm s-1) in PAMPA assay and neuro protective properties (40 µM) on SH-SY5Y neuroblastoma cell lines. Furthermore, in-vivo behavioural studies were performed on Y-maze test (scopolamine-induced amnesia model) and Morris water maze test (Aß1-42 induced ICV rat model). The compound 92, at a dose of 10 mg/kg oral administration, demonstrated a substantial improvement of the cognitive and special memory impairment. In summary, both in-vitro and in-vivo investigations evidenced that compound 92 was a potential lead for the discovery of safe and effective disease-modifying agents for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminas/farmacología , Inhibidores de la Colinesterasa/farmacología , Descubrimiento de Drogas , Fármacos Neuroprotectores/farmacología , Oxazoles/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Aminas/síntesis química , Aminas/química , Amnesia/inducido químicamente , Amnesia/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Anguilas , Femenino , Caballos , Humanos , Ligandos , Masculino , Ratones , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Oxazoles/síntesis química , Oxazoles/química , Ratas , Ratas Wistar , Escopolamina , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...