Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 215: 115756, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37598974

RESUMEN

Oxidative stress-mediated cell death has remained the prime parasiticidal mechanism of front line antimalarial, artemisinin (ART). The emergence of resistant Plasmodium parasites characterized by oxidative stress management due to impaired activation of ART and enhanced reactive oxygen species (ROS) detoxification has decreased its clinical efficacy. This gap can be filled by development of alternative chemotherapeutic agents to combat resistance defense mechanism. Interestingly, repositioning of clinically approved drugs presents an emerging approach for expediting antimalarial drug development and circumventing resistance. Herein, we evaluated the antimalarial potential of nitrofurantoin (NTF), a clinically used antibacterial drug, against intra-erythrocytic stages of ART-sensitive (Pf3D7) and resistant (PfKelch13R539T) strains of P. falciparum, alone and in combination with ART. NTF exhibited growth inhibitory effect at submicro-molar concentration by arresting parasite growth at trophozoite stage. It also inhibited the survival of resistant parasites as revealed by ring survival assay. Concomitantly, in vitro combination assay revealed synergistic association of NTF with ART. NTF was found to enhance the reactive oxygen and nitrogen species, and induced mitochondrial membrane depolarization in parasite. Furthermore, we found that exposure of parasites to NTF disrupted redox balance by impeding Glutathione Reductase activity, which manifests in enhanced oxidative stress, inducing parasite death. In vivo administration of NTF, alone and in combination with ART, in P. berghei ANKA-infected mice blocked parasite multiplication and enhanced mean survival time. Overall, our results indicate NTF as a promising repurposable drug with therapeutic potential against ART-sensitive as well as resistant parasites.


Asunto(s)
Antimaláricos , Artemisininas , Malaria , Parásitos , Animales , Ratones , Nitrofurantoína/farmacología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Reposicionamiento de Medicamentos , Artemisininas/farmacología
2.
J Appl Toxicol ; 41(11): 1779-1793, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33694194

RESUMEN

Neurological disturbances including cholinergic dysfunction, oxidative stress, neuroinflammation, and cognitive impairments are the well-reported consequences of old age-related disorders like Alzheimer's disease (AD) or dementia. Bisphosphonates were shown to ameliorate dementia in osteoporotic patients, neuroinflammation, and cholinesterase activity in rodents. Thus, the present study has been designed to examine the role of alendronate against cognitive and neurological disturbances in mice induced by a combined oral dose of d-galactose and aluminum chloride (AlCl3 ) for 6 weeks. d-galactose acts as a senescence agent, whereas AlCl3 is a neurotoxin and in combination generates neuropathologies and cognitive depletion resembling aging and AD. It was found that memory was markedly impaired in d-galactose + AlCl3 -treated mice as assessed in different behavioral paradigms. Additionally, d-galactose + AlCl3 led to neurotoxicity assessed on the basis of neuroinflammation, oxidative stress, glial cell activation, neuronal damage, and augmented GSK-3ß level in mice hippocampus. Consequently, alendronate administration orally for 15 days in d-galactose + AlCl3 -exposed mice prominently reversed all these behavioral and neuropathological changes. These findings show that alendronate can be a potential therapeutic molecule with multiple targets for the management of age-related neurological disorders such as AD.


Asunto(s)
Alendronato/farmacología , Cloruro de Aluminio/toxicidad , Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Galactosa/toxicidad , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Alendronato/uso terapéutico , Animales , Disfunción Cognitiva/inducido químicamente , Femenino , Masculino , Ratones , Enfermedades Neuroinflamatorias/inducido químicamente , Fármacos Neuroprotectores/uso terapéutico
3.
Neurotoxicology ; 70: 122-134, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30481507

RESUMEN

Alzheimer's disease (AD) is the most prevalent age related neurodegenerative disorder manifested by progressive cognitive decline and neuronal loss in the brain, yet precise etiopathology of majority of sporadic or late-onset AD cases is unknown. AD is associated with various pathological events such as Aß deposition due to BACE-1 induced cleavage of APP, neuroinflammation, increased cholesterol synthesis, cholinergic deficit and oxidative stress. It was found that bone drug, alendronate (ALN) that cross blood brain barrier inhibits brain cholesterol synthesis and AChE enzyme activity. As cholesterol modifying agents have been supposed to alter AD like pathologies, the current study was designed to investigate the possible neuroprotective and therapeutic potential of ALN against ICV STZ induced experimental sporadic AD (SAD) in mice in a non-cholesterol dependent manner, using donepezil (5 mg/kg) as a reference standard. The preliminary study was done by molecular modelling to identify the binding affinity of ALN with BACE-1 in silico. The prevention of cognitive impairment in mice induced by ICV STZ (3 mg/kg) infused on first and third day, by ALN (1.76 mg/kg p.o.) administered for 15 consecutive days was assessed through Spontaneous Alternation Behavior (SAB) and Morris water maze (MWM) test. Additionally, the protective effect of ALN was also observed by the reversal of altered levels of Aß1-42, BACE-,1 neuroinflammatory cytokines, AChE activity and oxidative stress markers (except TBARS) in ICV-STZ infused mice. However, the findings of the present study imply the therapeutic potential of ALN against SAD-like complications.


Asunto(s)
Alendronato/uso terapéutico , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Disfunción Cognitiva/metabolismo , Mediadores de Inflamación/metabolismo , Fragmentos de Péptidos/metabolismo , Estreptozocina/toxicidad , Alendronato/química , Alendronato/farmacología , Animales , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/prevención & control , Femenino , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Inyecciones Intraventriculares , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Simulación del Acoplamiento Molecular/métodos , Distribución Aleatoria , Estreptozocina/administración & dosificación , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA