Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Curr Alzheimer Res ; 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38424433

Dementia, an international health issue distinguished by the impairment of daily functioning due to cognitive decline, currently affects more than 55 million people worldwide, with the majority residing in low-income and middle-income countries. Globally, dementia entails significant economic burdens in 2019, amounting to a cost of 1.3 trillion US dollars. Informal caregivers devote considerable hours to providing care for those affected. Dementia imposes a greater caregiving and disability-adjusted life-year burden on women. A recent study has established a correlation between prolonged Proton Pump Inhibitor (PPI) usage and dementia, in addition to other neurodegenerative conditions. PPIs are frequently prescribed to treat peptic ulcers and GERD (gastroesophageal reflux disease) by decreasing stomach acid secretion. They alleviate acid-related symptoms through the inhibition of acid-secreting H+, K+ ATPase. In a number of observational studies, cognitive decline and dementia in the elderly have been linked to the use of PPIs. The precise mechanism underlying this relationship is unknown. These drugs might also alter the pH of brain cells, resulting in the accumulation of amyloid-beta (Aß) peptides and the development of Alzheimer's disease (AD). Despite the compelling evidence supporting the association of PPIs with dementia, the results of studies remain inconsistent. The absence of a correlation between PPI use and cognitive decline in some studies emphasizes the need for additional research. Chronic PPI use can conceal underlying conditions, including cancer, celiac disease, vitamin B12 deficiency, and renal injury, highlighting dementia risk and the need for further investigations on cognitive health.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 3867-3895, 2024 06.
Article En | MEDLINE | ID: mdl-38225412

Neurodegenerative and neuropsychiatric disorders are two broad categories of neurological disorders characterized by progressive impairments in movement and cognitive functions within the central and peripheral nervous systems, and have emerged as a significant cause of mortality. Oxidative stress, neuroinflammation, and neurotransmitter imbalances are recognized as prominent pathogenic factors contributing to cognitive deficits and neurobehavioral anomalies. Consequently, preventing neurodegenerative and neuropsychiatric diseases has surfaced as a pivotal challenge in contemporary public health. This review explores the investigation of neurodegenerative and neuropsychiatric disorders using both synthetic and natural bioactive compounds. A central focus lies on melatonin, a neuroregulatory hormone secreted by the pineal gland in response to light-dark cycles. Melatonin, an amphiphilic molecule, assumes multifaceted roles, including scavenging free radicals, modulating energy metabolism, and synchronizing circadian rhythms. Noteworthy for its robust antioxidant and antiapoptotic properties, melatonin exhibits diverse neuroprotective effects. The inherent attributes of melatonin position it as a potential key player in the pathophysiology of neurological disorders. Preclinical and clinical studies have demonstrated melatonin's efficacy in alleviating neuropathological symptoms across neurodegenerative and neuropsychiatric conditions (depression, schizophrenia, bipolar disorder, and autism spectrum disorder). The documented neuroprotective prowess of melatonin introduces novel therapeutic avenues for addressing neurodegenerative and psychiatric disorders. This comprehensive review encompasses many of melatonin's applications in treating diverse brain disorders. Despite the strides made, realizing melatonin's full neuroprotective potential necessitates further rigorous clinical investigations. By unravelling the extended neuroprotective benefits of melatonin, future studies promise to deepen our understanding and augment the therapeutic implications against neurological deficits.


Melatonin , Mental Disorders , Neurodegenerative Diseases , Neuroprotective Agents , Melatonin/pharmacology , Melatonin/therapeutic use , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Mental Disorders/drug therapy , Mental Disorders/physiopathology , Mental Disorders/metabolism , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Brain/drug effects , Brain/metabolism , Brain/physiopathology
3.
Biomolecules ; 14(1)2024 Jan 19.
Article En | MEDLINE | ID: mdl-38275759

The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.


COVID-19 , Geranium , Virus Diseases , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , SARS-CoV-2 , Flavonoids/pharmacology , Phenols/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Virus Diseases/drug therapy
4.
Antioxidants (Basel) ; 12(12)2023 Nov 28.
Article En | MEDLINE | ID: mdl-38136170

Alzheimer's disease manifests as a complex pathological condition, with neuroinflammation, oxidative stress and cholinergic dysfunction being a few of the many pathological changes. Due to the complexity of the disease, current therapeutic strategies aim at a multitargeted approach, often relying on a combination of substances with versatile and complementary effects. In the present study, a unique combination of α-lipoic acid, citicoline, extracts of leaves from olive tree and green tea, vitamin D3, selenium and an immune-supporting complex was tested in scopolamine-induced dementia in rats. Using behavioral and biochemical methods, we assessed the effects of the combination on learning and memory, and elucidated the mechanisms of these effects. Our results showed that, compared to its components, the experimental combination was most efficient in improving short- and long-term memory as assessed by the step-through method as well as spatial memory as assessed by T-maze and Barnes maze underlined by decreases in AChE activity (p < 0.05) and LPO (p < 0.001), increases in SOD activity in the cortex (p < 0.05) and increases in catalase (p < 0.05) and GPx (p < 0.01) activities and BDNF (p < 0.001) and pCREB (p < 0.05) levels in the hippocampus. No significant histopathological changes or blood parameter changes were detected, making the experimental combination an effective and safe candidate in a multitargeted treatment of AD.

5.
Genes (Basel) ; 14(12)2023 Dec 07.
Article En | MEDLINE | ID: mdl-38137009

Alzheimer's disease (AD) is a neurodegenerative disorder classically characterized by two neuropathological hallmarks: ß-amyloid plaques and tau tangles in the brain. However, the cellular and molecular mechanisms involved in AD are still elusive, which dampens the possibility of finding new and more effective therapeutic interventions. Current in vitro models are limited in modelling the complexity of AD pathogenesis. In this study, we aimed to characterize the AD expression signature upon a meta-analysis of multiple human datasets, including different cell populations from various brain regions, and compare cell-specific alterations in AD patients and in vitro models to highlight the appropriateness and the limitations of the currently available models in recapitulating AD pathology. The meta-analysis showed consistent enrichment of the Rho GTPases signaling pathway among different cell populations and in the models. The accuracy of in vitro models was higher for neurons and lowest for astrocytes. Our study underscores the particularly low fidelity in modelling down-regulated genes across all cell populations. The top enriched pathways arising from meta-analysis of human data differ from the enriched pathways arising from the overlap. We hope that our data will prove useful in indicating a starting point in the development of future, more complex, 3D in vitro models.


Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Neurons/metabolism , Brain/metabolism , Astrocytes/metabolism
6.
Comput Struct Biotechnol J ; 22: 50-57, 2023.
Article En | MEDLINE | ID: mdl-37928975

Introduction: Single microbial pathogens or host-microbiome dysbiosis are the causes of lung diseases with suspected infectious etiology. Metagenome sequencing provides an overview of the microbiome content. Due to the rarity of most granulomatous lung diseases collecting large systematic datasets is challenging. Thus, single-patient data often can only be summarized visually. Objective: To increase the information gain from a single-case metagenome analysis we suggest a quantitative and qualitative approach. Results: The 16S metagenomic results of 7 patients with pulmonary sarcoidosis were compared with those of 22 healthy individuals. From lysed blood, total microbial DNA was extracted and sequenced. Cleaned data reads were identified taxonomically using Kraken 2 software. Individual metagenomic data were visualized with a Sankey diagram, Krona chart, and a heat-map. We identified five genera that were exclusively present or significantly enhanced in patients with sarcoidosis - Veillonella, Prevotella, Cutibacterium, Corynebacterium, and Streptococcus. Conclusions: Our approach can characterize the blood microbiome composition and diversity in rare diseases at an individual level. Investigation of the blood microbiome in patients with granulomatous lung diseases of unknown etiology, such as sarcoidosis could enhance our comprehension of their origin and pathogenesis and potentially uncover novel personalized therapeutics.

7.
Life (Basel) ; 13(10)2023 Oct 20.
Article En | MEDLINE | ID: mdl-37895468

The investigation of monoterpenes as natural products has gained significant attention in the search for new pharmacological agents due to their ability to exhibit a wide range in biological activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive, and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and memory-enhancing effects in experimental dementia and Parkinson's disease. Chemical modification of natural substances by conjugation with various synthetic components is a modern method of obtaining new biologically active compounds. The discovery of new potential drugs among monoterpene derivatives is a progressive avenue within experimental pharmacology, offering a promising approach for the therapy of diverse pathological conditions. Biologically active substances such as monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer's, antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal with the established pharmacophore adamantane enables the augmentation of several of its pivotal properties. Myrtenal-adamantane derivatives exhibited a variety of beneficial characteristics, such as antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are worth examining in more detail and at length.

8.
Front Pharmacol ; 14: 1218506, 2023.
Article En | MEDLINE | ID: mdl-37521462

Background: Nephrotoxicity refers to the toxigenic impact of compounds and medications on kidney function. There are a variety of drug formulations, and some medicines that may affect renal function in multiple ways via nephrotoxins production. Nephrotoxins are substances that are harmful to the kidneys. Purpose: This investigation examines the renoprotective effect of gymnemic acid (GA) on Wistar rats in gentamicin-induced nephrotoxicity by analyzing serum, kidney, and histopathological markers. Study-design/methods: The current study investigated the protective effect of GA at doses of 20, 40, and 60 mg/kg against gentamicin-induced nephrotoxicity in rats. Vitamin E was administered to compare the antioxidant capacity and efficacy of GA. In addition to the treatment groups, 100 mg/kg of gentamicin was administered intraperitoneal for 14 days. At the end of the study protocol, kidney homogenate, blood, and serum were evaluated biochemically. Serum creatinine, blood urea, glomerular filtration rate (GFR), mitochondrial dysfunctions, inflammatory cytokines, and renal oxidative stress were examined to assess gentamicin-induced nephrotoxicity. In addition, the impact of GA on the above-mentioned nephrotoxic markers were evaluated and further confirmed by histological analysis. Results: This study establishes a correlation between antibiotic use, especifically aminoglycosides and acute renal failure. The research demonstrates the nephrotoxic effects of aminoglycosides, inducing mitochondrial ETC-complex dysfunction, and renal tissue inflammation in experimental rats. GA's antioxidant properties restored renal oxidative stress markers, reducing kidney inflammation and injury. Histopathological analysis revealed a significant reduction in renal injury with GA treatment. Additionally, GA demonstrated greater efficacy than Vitamin E in restoring antioxidant potential and mitochondrial enzymes. Conclusion: Consequently, our findings imply that long-term use of GA may be a suitable therapeutic strategy for reducing aminoglycoside toxicity. The current study suggests GA's potential in treating gentamicin-induced nephrotoxicity and acute renal failure, meriting further investigation using advanced techniques.

9.
Molecules ; 28(9)2023 Apr 27.
Article En | MEDLINE | ID: mdl-37175181

Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.


COVID-19 , Lythraceae , Pomegranate , Humans , Polyphenols/pharmacology , Hydrolyzable Tannins/pharmacology , Ellagic Acid/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2
10.
Eur J Med Chem ; 254: 115386, 2023 Jun 05.
Article En | MEDLINE | ID: mdl-37094450

The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.


Neurotensin , Parkinson Disease , Animals , Humans , Mice , Dopamine , Ligands , Neurotensin/pharmacology , Neurotensin/metabolism , Parkinson Disease/drug therapy , Protein Binding , Receptors, Neurotensin/metabolism
11.
J Alzheimers Dis ; 92(4): 1289-1302, 2023.
Article En | MEDLINE | ID: mdl-36872784

BACKGROUND: The neurodegenerative process in Alzheimer's disease, one of the most common types of dementia worldwide, mostly affects the cholinergic neurotransmitter system and, to a lesser extent, the monoaminergic one. The antioxidant acetylcholinesterase (AChE) and triple monoamine reuptake inhibitory activity of Sideritis scardica (S. scardica) and other Sideritis species has already been reported. OBJECTIVE: To investigate the effects of S. scardica water extracts on the learning and memory processes, anxiety-like behavior, and locomotor activities in scopolamine (Sco)-induced dementia in mice. METHODS: Male Albino IRC mice were used. The plant extract was administered for 11 consecutive days in the presence or absence of Sco (1 mg/kg, i.p). The behavioural performance of the animals was evaluated by passive avoidance, T-maze, and hole-board tests. The effects of extract on AChE activity, brain noradrenalin (NA), and serotonin (Sero) content, and antioxidant status were also monitored. RESULTS: Our experimental data revealed that the S. scardica water extract caused a reduction in degree of memory impairment and anxiety-like behaviour in mice with scopolamine-induced dementia. The extract did not affect changed by the Sco AChE activity but impact reduced brain NA and Sero levels and demonstrated moderate antioxidant activity. In healthy mice we did not confirm the presence of anxiolytic-like and AChE inhibitory effects of the S. scardica water extract. The extract did not change the control Sero brain levels and reduce those of NA. CONCLUSION: S. scardica water extract demonstrated memory preserving effect in mice with scopolamine-induced dementia and deserve further attention.


Dementia , Sideritis , Mice , Animals , Scopolamine/toxicity , Antioxidants/adverse effects , Acetylcholinesterase , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Plant Extracts/adverse effects , Water/adverse effects , Dementia/chemically induced , Dementia/drug therapy , Maze Learning
12.
Int J Mol Sci ; 24(3)2023 Jan 17.
Article En | MEDLINE | ID: mdl-36768185

Pomegranate (Punica granatum L.) is a polyphenol-rich food and medicinal plant containing flavonols, anthocyanins, and tannins. Ellagitannins (ETs) are the most abundant polyphenols in pomegranate. A growing body of research shows that polyphenol-rich pomegranate extracts and their metabolites target multiple types of brain cell and support their redox balance, proliferation and survival, as well as cell signaling. Independent studies have demonstrated that the significant neuroprotective effects of ETs are mediated by their antioxidant and anti-inflammatory effects, their chelating properties, by their ability to activate various signaling pathways, as well as the ability to influence mitochondrial damage, thus regulating autophagy, apoptosis and neurotransmitter signaling. The multitude of in vitro and in vivo studies summarized in the present review suggest that pomegranate polyphenols act on both neuronal and glial cells directly, and also affect blood-brain barrier function, restoring redox balance in the blood and brain and increasing blood flow to the brain.


Lythraceae , Pomegranate , Polyphenols/pharmacology , Polyphenols/therapeutic use , Anthocyanins , Tannins/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Hydrolyzable Tannins/pharmacology , Antioxidants/pharmacology , Antioxidants/therapeutic use
13.
Molecules ; 27(22)2022 Nov 17.
Article En | MEDLINE | ID: mdl-36432051

Parkinson's disease (PD) is characterised by dopaminergic neuronal loss in the brain area. PD is a complex disease that deteriorates patients' motor and non-motor functions. In experimental animals, the neurotoxin 6-OHDA induces neuropathological, behavioural, neurochemical and mitochondrial abnormalities and the formation of free radicals, which is related to Parkinson-like symptoms after inter-striatal 6-OHDA injection. Pathological manifestations of PD disrupt the cAMP/ATP-mediated activity of the transcription factor CREB, resulting in Parkinson's-like symptoms. Forskolin (FSK) is a direct AC/cAMP/CREB activator isolated from Coleus forskohlii with various neuroprotective properties. FSK has already been proven in our laboratory to directly activate the enzyme adenylcyclase (AC) and reverse the neurodegeneration associated with the progression of Autism, Multiple Sclerosis, ALS, and Huntington's disease. Several behavioural paradigms were used to confirm the post-lesion effects, including the rotarod, open field, grip strength, narrow beam walk (NBW) and Morris water maze (MWM) tasks. Our results were supported by examining brain cellular, molecular, mitochondrial and histopathological alterations. The FSK treatment (15, 30 and 45 mg/kg, orally) was found to be effective in restoring behavioural and neurochemical defects in a 6-OHDA-induced experimental rat model of PD. As a result, the current study successfully contributes to the investigation of FSK's neuroprotective role in PD prevention via the activation of the AC/cAMP/PKA-driven CREB pathway and the restoration of mitochondrial ETC-complex enzymes.


Adenylyl Cyclases , Parkinson Disease , Animals , Rats , Oxidopamine/adverse effects , Colforsin/pharmacology , Adenylyl Cyclases/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/metabolism , Mitochondria/metabolism
14.
Biomedicines ; 10(11)2022 Nov 09.
Article En | MEDLINE | ID: mdl-36359390

Huntington's disease (HD) is distinguished by a triple repeat of CAG in exon 1, an increase in poly Q in the Htt gene, and a loss of GABAergic medium spiny neurons (MSN) in the striatum and white matter of the cortex. Mitochondrial ETC-complex dysfunctions are involved in the pathogenesis of HD, including neuronal energy loss, synaptic neurotrophic decline, neuronal inflammation, apoptosis, and grey and white matter destruction. A previous study has demonstrated that beta Boswellic acid (ß-BA), a naturally occurring phytochemical, has several neuroprotective properties that can reduce pathogenic factors associated with various neurological disorders. The current investigation aimed to investigate the neuroprotective potential of ß-BA at oral doses of 5, 10, and 15 mg/kg alone, as well as in conjunction with the potent antioxidant vitamin E (8 mg/kg, orally) in 3-NP-induced experimental HD rats. Adult Wistar rats were separated into seven groups, and 3-NP, at a dose of 10 mg/kg, was orally administered to each group of adult Wistar rats beginning on day 1 and continuing through day 14. The neurotoxin 3-NP induces neurodegenerative, g, neurochemical, and pathological alterations in experimental animals. Continuous injection of 3-NP, according to our results, aggravated HD symptoms by suppressing ETC-complex-II, succinate dehydrogenase activity, and neurochemical alterations. ß-BA, when taken with vitamin E, improved behavioural dysfunctions such as neuromuscular and motor impairments, as well as memory and cognitive abnormalities. Pharmacological treatments with ß-BA improved and restored ETC complexes enzymes I, II, and V levels in brain homogenates. ß-BA treatment also restored neurotransmitter levels in the brain while lowering inflammatory cytokines and oxidative stress biomarkers. ß-BA's neuroprotective potential in reducing neuronal death was supported by histopathological findings in the striatum and cortex. As a result, the findings of this research contributed to a better understanding of the potential role of natural phytochemicals ß-BA in preventing neurological illnesses such as HD.

15.
Brain Sci ; 12(10)2022 Oct 12.
Article En | MEDLINE | ID: mdl-36291312

Although the introduction of HAART has completely changed the natural course of HIV infection, the number of chronic forms of HIV-associated neurocognitive disorder (HAND) has risen. It is estimated that up to half of subjects undergoing HAART therapy exhibit mild cognitive impairments. In the current study, we apply the gene co-expression network modular analysis, a well-established system biology approach, to the gene expression profiles of cases from the National NeuroAIDS Tissue Consortium (NNTC). We observed a negative enrichment for genes associated with the control of immune responses and putatively regulated by the transcription factors IRF8 and SPI1 and by both type I and II interferons. Our study provides evidence of altered immune responses, which are likely associated with the occurrence of HAND in the absence of HIV encephalitis (HIVE).

16.
Molecules ; 27(17)2022 Aug 25.
Article En | MEDLINE | ID: mdl-36080227

Alzheimer's disease (AD) is a neurodegenerative disease associated with memory impairment and other central nervous system (CNS) symptoms. Two myrtenal-adamantane conjugates (MACs) showed excellent CNS potential against Alzheimer's models. Adamantane is a common pharmacophore for drug design, and myrtenal (M) demonstrated neuroprotective effects in our previous studies. The aim of this study is to evaluate the MACs' neuroprotective properties in dementia. METHODS: Scopolamine (Scop) was applied intraperitoneally in Wistar rats for 11 days, simultaneously with MACs or M as a referent, respectively. Brain acetylcholine esterase (AChE) activity, noradrenaline and serotonin levels, and oxidative brain status determination followed behavioral tests on memory abilities. Molecular descriptors and docking analyses for AChE activity center affinity were performed. RESULTS: M derivatives have favorable physicochemical parameters to enter the CNS. Both MACs restored memory damaged by Scop, showing significant AChE-inhibitory activity in the cortex, in contrast to M, supported by the modeling analysis. Moderate antioxidant properties were manifested by glutathione elevation and catalase activity modulation. MACs also altered noradrenaline and serotonin content in the hippocampus. CONCLUSION: For the first time, neuroprotective properties of two MACs in a rat dementia model were observed. They were stronger than the natural M effects, which makes the substances promising candidates for AD treatment.


Adamantane , Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Acetylcholinesterase/metabolism , Adamantane/pharmacology , Alzheimer Disease/drug therapy , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Bicyclic Monoterpenes , Maze Learning , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Norepinephrine , Oxidative Stress , Rats , Rats, Wistar , Scopolamine/pharmacology , Serotonin/metabolism
17.
Cells ; 11(18)2022 09 06.
Article En | MEDLINE | ID: mdl-36139346

Multiple sclerosis (MS) is a chronic neurodegenerative disease marked by oligodendrocyte loss, which results in central neuronal demyelination. AC/cAMP/CREB signaling dysregulation is involved in the progression of MS, including mitochondrial dysfunctions, reduction in nerve growth factors, neuronal inflammation, apoptosis, and white matter degeneration. Our previous research has shown that Forskolin (FSK), a naturally occurring direct adenylyl cyclase (AC)/cAMP/CREB activator, has neuroprotective potential to alleviate pathogenic factors linked with numerous neurological abnormalities. The current study intends to explore the neuroprotective potential of FSK at doses of 40 mg/kg and 60 mg/kg alone, as well as in combination with conventional medicines, such as Fingolimod (FNG), Donepezil (DON), Memantine (MEM), and Simvastatin (SIM) in EB-induced demyelinated experimental MS rats. Adult Wistar rats were divided into nine groups, and EB was infused stereotaxically in the rat brain's intracerebropeduncle (ICP) area. Chronic gliotoxin EB treatment results in demyelination as well as motor and cognitive dysfunctions. FSK, combined with standard medications, improves behavioral dysfunctions, such as neuromuscular and motor deficits and memory and cognitive abnormalities. Following pharmacological treatments improved remyelination by enhancing myelin basic protein and increasing AC, cAMP, and CREB levels in brain homogenates. Furthermore, FSK therapy restored brain mitochondrial-ETC complex enzymes and neurotransmitter levels while decreasing inflammatory cytokines and oxidative stress markers. The Luxol fast blue (LFB) stain results further indicate FSK's neuroprotective potential in preventing oligodendrocyte death. Therefore, the results of these studies contribute to a better understanding of the possible role that natural phytochemicals FSK could have in preventing motor neuron diseases, such as multiple sclerosis.


Demyelinating Diseases , Gliotoxin , Multiple Sclerosis , Neurodegenerative Diseases , Adenylyl Cyclases/metabolism , Animals , Colforsin , Cytokines/metabolism , Demyelinating Diseases/pathology , Donepezil/adverse effects , Donepezil/metabolism , Ethidium/metabolism , Ethidium/pharmacology , Ethidium/therapeutic use , Fingolimod Hydrochloride , Memantine/therapeutic use , Multiple Sclerosis/pathology , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Nerve Growth Factors/metabolism , Neurodegenerative Diseases/metabolism , Oligodendroglia/metabolism , Rats , Rats, Wistar , Simvastatin
18.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 02.
Article En | MEDLINE | ID: mdl-36015107

Bipolar disorder (BD) is a chronic mental illness characterized by mood fluctuations that range from depressive lows to manic highs. Several studies have linked the downregulation of SIRT-1 (silent mating type information regulation-2 homologs) signaling to the onset of BD and other neurological dysfunctions. This research aimed to look into the neuroprotective potential of Solanesol (SNL) in rats given ICV-Ouabain injections, focusing on its effect on SIRT-1 signaling activation in the brain. Ouabain, found in hypothalamic and medullary neurons, is an endogenous inhibitor of brain Na+/K+ ATPase. The inhibition of brain Na+/K+ ATPase by Ouabain may also result in changes in neurotransmission within the central nervous system. SNL is a Solanaceae family active phytoconstituent produced from the plant Nicotiana tabacum. SNL is used as a precursor for the production of CoQ10 (Coenzyme Q10), a powerful antioxidant and neuroprotective compound. In the current study, lithium (Li), an important mood stabilizer drug, was used as a control. This study looked at the neuroprotective potential of SNL at dosages of 40 and 80 mg/kg in ICV-OUA injections that caused BD-like neurobehavioral and neurochemical defects in Wistar rats. Wistar rats were placed into eight groups (n = 6) and administered 1 mM/0.5 µL ICV-OUA injections for three days. Neurochemical assessments were done in rat brain homogenates, CSF, and blood plasma samples at the end of the experiment protocol schedule. Long-term SNL and lithium administration have been shown to decrease the number of rearing and crossings and reduce time spent in the center, locomotor activities, and immobility time. Solansesol treatment gradually raises the amount of Na+/K+ ATPase, limiting the severity of behavioural symptoms. These findings also revealed that SNL increases the levels of SIRT-1 in CSF, blood plasma, and brain homogenate samples. Moreover, in rat brain homogenates and blood plasma samples, SNL modulates apoptotic markers such as Caspase-3, Bax (pro-apoptotic), and Bcl-2 (anti-apoptotic). Mitochondrial-ETC complex enzymes, including complex-I, II, IV, V, and CoQ10, were also restored following long-term SNL treatment. Furthermore, SNL lowered inflammatory cytokines (TNF-α, IL-1ß) levels while restoring neurotransmitter levels (serotonin, dopamine, glutamate, and acetylcholine) and decreasing oxidative stress markers. Histological examinations also validated Solanesol's protective effect. As a result, our findings suggest that SNL, as a SIRT-1 signalling activator, may be a promising therapeutic approach for BD-like neurological dysfunctions.

19.
J Alzheimers Dis ; 88(1): 155-175, 2022.
Article En | MEDLINE | ID: mdl-35599481

BACKGROUND: Alzheimer's disease (AD) is a complex neurodegenerative disease with multifactorial etiology, unsatisfactory treatment, and a necessity for broad-spectrum active substances for cure. The mucus from Helix aspersa snail is a mixture of bioactive molecules with antimicrobial, anti-inflammatory, antioxidant, and anti-apoptotic effects. So far there are no data concerning the capacity of snail extract (SE) to affect neurodegenerative disorders. OBJECTIVE: The effects of SE from Helix aspersa on learning and memory deficits in Alzheimer's type dementia (ATD) induced by scopolamine (Sco) in male Wistar rats were examined and some mechanisms of action underlying these effects were evaluated. METHODS: SE (0.5 mL/100 g) was applied orally through a food tube for 16 consecutive days: 5 days before and 11 days simultaneously with Sco (2 mg/kg, intraperitoneally). At the end of Sco treatment, using behavioral methods, we evaluated memory performance. Additionally, in cortex and hippocampus the acetylcholinesterase (AChE) activity, acetylcholine and monoamines (dopamine, noradrenaline, and serotonin) content, levels of main oxidative stress markers, and expression of brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) were determined. RESULTS: We demonstrated that, according to all behavioral tests used, SE significantly improved the cognitive deficits induced by Sco. Furthermore, SE possessed AChE inhibitory activity, moderate antioxidant properties and the ability to modulate monoamines content in two brain structures. Moreover, multiple SE applications not only restored the depressed by Sco expression of CREB and BDNF, but significantly upregulated it. CONCLUSION: Summarizing results, we conclude that complex mechanisms underlie the beneficial effects of SE on impaired memory in Alzheimer's type dementia.


Alzheimer Disease , Neurodegenerative Diseases , Acetylcholinesterase/metabolism , Alzheimer Disease/complications , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Antioxidants , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Hippocampus/metabolism , Male , Memory Disorders/metabolism , Models, Theoretical , Neurodegenerative Diseases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Scopolamine/metabolism
20.
Antioxidants (Basel) ; 11(2)2022 Feb 12.
Article En | MEDLINE | ID: mdl-35204256

There is growing attention on natural substances capable of stimulating the cholinergic system and of exerting antioxidant effects, as potential therapeutic agents in Alzheimer's disease (AD). The aim of the present study is to evaluate the expected neuroprotective mechanisms of myrtenal (M) in an experimental model of dementia in rats. Dementia was induced in male Wistar rats by scopolamine (Sc) administration (0.1 mg/kg for 8 days and 20.0 mg/kg on day 9). The animals were divided into 5 groups (1) Controls; (2) Sc; (3) Sc + Myrtenal (40 mg/kg), (4) Sc + Galantamine (1 mg/kg); (5) Sc + Lipoic acid (30 mg/kg). Changes in recognition memory and habituation were evaluated via the Novel Object Recognition and Open Field tests. Acetylcholinesterase (AChE) activity, ACh levels, and changes in oxidative status of the brain were measured biochemically. The histological changes in two brain regions-cortex and hippocampus, were evaluated qualitatively and quantitatively. Myrtenal improved recognition memory and habituation, exerted antioxidant effects and significantly increased ACh brain levels. Histologically, the neuroprotective capacity of myrtenal was also confirmed. For the first time, we have demonstrated the neuroprotective potential of myrtenal in an experimental model of dementia. Our study provides proof-of-concept for the testing of myrtenal, in association with standard of care treatments, in patients affected by cognitive decline.

...