Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroimmunol ; 341: 577169, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32004915

RESUMEN

Female rats were fed a normal or hypoproteic diet during the phases of gestation and lactation. The male offspring of these rats were grown to adulthood and used to study the effects of maternal protein malnutrition on progeny. The adult male rats were pretreated with either saline or LPS and subjected to behavioral tests 2 and 6 h after administration. Tumor necrosis factor (TNF-α), corticosterone and body temperature were the parameters used for assessment. Two hours after LPS administration, sickness behavior was developed in all the animals, regardless of maternal protein malnutrition. After 6 h of LPS administration, sickness behavior was more pronounced in the rats that had been subjected to maternal protein malnutrition. Only the rats with maternal protein malnutrition expressed an increase in the plasma levels of TNF-α and corticosterone. Maternal protein malnutrition prolongs sickness behaviors in offspring.


Asunto(s)
Conducta de Enfermedad , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal , Deficiencia de Proteína/fisiopatología , Animales , Corticosterona/sangre , Endotoxemia/sangre , Endotoxemia/psicología , Femenino , Fiebre/etiología , Lactancia , Lipopolisacáridos/toxicidad , Masculino , Embarazo , Ratas , Ratas Wistar , Conducta Social , Natación , Factor de Necrosis Tumoral alfa/sangre
2.
PLoS One ; 14(12): e0226874, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31887176

RESUMEN

During the transition to menopause, women experience a variety of physical and psychological symptoms that are directly or indirectly linked to changes in hormone secretion. Establishing animal models with intact ovaries is essential for understanding these interactions and finding new therapeutic targets. In this study, we assessed the endocrine profile, as well as the estrous cycle, in the 4-vinylcyclohexene diepoxide (VCD)-induced follicular depletion rat model in 10-day intervals over 1 month to accurately establish the best period for studies of the transition period. Twenty-eight-day-old female rats were injected daily with VCD or oil s.c. for 15 days and euthanized in the diestrus phase approximately 70, 80, 90 and 100 days after the onset of treatment. The percentage of rats showing irregular cycles and the plasma level of FSH increased only in the 100-day VCD group. Plasma anti-Müllerian hormone (AMH) and progesterone were lower in all VCD groups compared to control groups, while estradiol remained unchanged or higher. As in control groups, dihydrotestosterone (DHT) progressively decreased in the 70-90-day VCD groups; however, it was followed by a sharp increase only in the 100-day VCD group. No changes were found in plasma corticosterone, prolactin, thyroid hormones or luteinizing hormone. Based on the estrous cycle and endocrine profile, we conclude that 1) the time window from 70 to 100 days is suitable to study a perimenopause-like state in this model, and 2) regular cycles with low progesterone and AMH and normal FSH can be used as markers of the early/mid-transition period, whereas irregular cycles associated with higher FSH and DHT can be used as markers of the late transition period to estropause.


Asunto(s)
Sistema Endocrino/química , Perimenopausia/sangre , Animales , Hormona Antimülleriana/sangre , Biomarcadores/sangre , Ciclohexenos , Dihidrotestosterona/sangre , Ciclo Estral/sangre , Femenino , Hormona Folículo Estimulante/sangre , Modelos Animales , Progesterona/sangre , Ratas , Factores de Tiempo , Compuestos de Vinilo
3.
J Neurosci ; 38(28): 6310-6322, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29899026

RESUMEN

A population of kisspeptin-GABA coexpressing neurons located in the rostral periventricular area of the third ventricle (RP3V) is believed to activate gonadotropin-releasing hormone (GnRH) neurons to generate the luteinizing hormone (LH) surge triggering ovulation. Selective optogenetic activation of RP3V kisspeptin (RP3VKISS) neurons in female mice for >30 s and ≥10 Hz in either a continuous or bursting mode was found to reliably generate a delayed and long-lasting activation of GnRH neuron firing in brain slices. Optogenetic activation of RP3VKISS neurons in vivo at 10 Hz generated substantial increments in LH secretion of similar amplitude to the endogenous LH surge. Studies using GABAA receptor antagonists and optogenetic activation of RP3V GABA (RP3VGABA) neurons in vitro revealed that low-frequency (2 Hz) stimulation generated immediate and transient GABAA receptor-mediated increases in GnRH neuron firing, whereas higher frequencies (10 Hz) recruited the long-lasting activation observed following RP3VKISS neuron stimulation. In vivo, 2 Hz activation of RP3VGABA neurons did not alter LH secretion, whereas 10 Hz stimulation evoked a sustained large increase in LH identical to RP3VKISS neuron activation. Optogenetic activation of RP3VKISS neurons in which kisspeptin had been deleted did not alter LH secretion. These studies demonstrate the presence of parallel transmission streams from RP3V neurons to GnRH neurons that are frequency dependent and temporally distinct. This comprises a rapid and transient GABAA receptor-mediated activation and a slower onset kisspeptin-mediated stimulation of long duration. At the time of the LH surge, GABA release appears to be functionally redundant with the neuropeptide kisspeptin being the dominant cotransmitter influencing GnRH neuron output.SIGNIFICANCE STATEMENT Miscommunication between the brain and ovaries is thought to represent a major cause of infertility in humans. Studies in rodents suggest that a population of neurons located in the rostral periventricular area of the third ventricle (RP3V) are critical for activating the gonadotropin-releasing hormone (GnRH) neurons that trigger ovulation. The present study provides evidence that an RP3V neuron population coexpressing kisspeptin and GABA provides a functionally important excitatory input to GnRH neurons at the time of ovulation. This neural input releases GABA and/or kisspeptin in the classical frequency dependent and temporally distinct nature of amino acid-neuropeptide cotransmission. Unusually, however, the neuropeptide stream is found to be functionally dominant in activating GnRH neurons at the time of ovulation.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuronas/fisiología , Ovulación/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Hormona Luteinizante/metabolismo , Ratones , Tercer Ventrículo
4.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29362726

RESUMEN

Chronic exposure to 4-vinylcycloxene diepoxide (VCD) in rodents accelerates the natural process of ovarian follicular atresia modelling perimenopause in women. We investigated why estrogen therapy is beneficial for symptomatic women despite normal or high estrogen levels during perimenopause. Female rats (28 d) were injected daily with VCD or oil for 15 d; 55-65 d after the first injection, pellets of 17ß-estradiol or oil were inserted subcutaneously. Around 20 d after, the rats were euthanized (control rats on diestrus and estradiol-treated 21 d after pellets implants). Blood was collected for hormone measurement, the brains were removed and dorsal raphe nucleus (DRN), hippocampus (HPC), and amygdala (AMY) punched out for serotonin (5-HT), estrogen receptor ß (ERß), and progesterone receptor (PR) mRNA level measurements. Another set of rats was perfused for tryptophan hydroxylase (TPH) immunohistochemistry in the DRN. Periestropausal rats exhibited estradiol levels similar to controls and a lower progesterone level, which was restored by estradiol. The DRN of periestropausal rats exhibited lower expression of PR and ERß mRNA and a lower number of TPH cells. Estradiol restored the ERß mRNA levels and number of serotonergic cells in the DRN caudal subregion. The 5-HT levels were lower in the AMY and HPC in peristropausal rats, and estradiol treatment increased the 5-HT levels in the HPC and also increased ERß expression in this area. In conclusion, estradiol may improve perimenopause symptoms by increasing progesterone and boosting serotonin pathway from the caudal DRN to the dorsal HPC potentially through an increment in ERß expression in the DRN.


Asunto(s)
Encéfalo/efectos de los fármacos , Estradiol/farmacología , Estrógenos/farmacología , Terapia de Reemplazo de Hormonas , Perimenopausia/efectos de los fármacos , Serotonina/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Ciclohexenos , Estradiol/metabolismo , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Femenino , Modelos Animales , Perimenopausia/metabolismo , ARN Mensajero/metabolismo , Ratas Wistar , Receptores de Progesterona/metabolismo , Triptófano Hidroxilasa/metabolismo , Compuestos de Vinilo
5.
Neuroendocrinology ; 105(1): 77-89, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27454155

RESUMEN

The aim of this immunohistochemical study was to evaluate the distribution of kisspeptin neurons in the preoptic area (POA) of gonadally intact adult male and female rhesus monkeys, and to determine whether imposition of an estradiol (E2)-positive feedback signal in the castrate male increased kisspeptin in the POA. Additionally, kisspeptin in the POA of the intact female was examined during an LH surge induced prematurely by E2 administered in the early follicular phase. The number of kisspeptin neurons in the POA of males and females was similar. Immunoactive kisspeptin perikarya were not observed in the POA of castrate adult males, but such neurons in these animals were present within 12 h of imposing an increment in circulating E2 concentrations that in a screening study conducted 4-6 weeks earlier had elicited an LH surge. As expected, premature induction of an LH surge by E2 early in the follicular phase was associated with upregulation of kisspeptin in the POA. These results represent the first description of immunoreactive kisspeptin cell bodies in the POA of the macaque brain and provide further support for the view that (1) kisspeptin neurons in the POA of the female monkey are a target for the positive feedback action of E2 and (2) the hypothalamic mechanism which mediates this action of E2 in primates is not subjected to perinatal programming by testicular testosterone. Moreover, our findings indicate that maintenance of the kisspeptin content in the POA of intact male monkeys requires the action of E2, presumably generated by aromatization of testicular testosterone at the hypothalamic level.


Asunto(s)
Estradiol/farmacología , Estrógenos/farmacología , Kisspeptinas/metabolismo , Área Preóptica/efectos de los fármacos , Caracteres Sexuales , Regulación hacia Arriba/efectos de los fármacos , Análisis de Varianza , Animales , Anticuerpos/farmacología , Castración , Recuento de Células , Estradiol/sangre , Estrógenos/sangre , Femenino , Fase Folicular/efectos de los fármacos , Humanos , Histerectomía , Kisspeptinas/inmunología , Hormona Luteinizante/sangre , Macaca mulatta , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ovulación/efectos de los fármacos , Área Preóptica/citología , Área Preóptica/metabolismo , Vasopresinas/metabolismo
6.
Brain Res ; 1650: 21-30, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27566061

RESUMEN

The time course effects of ovarian steroids on kisspeptin and GnRH/LH systems is not totally clarified. We investigated the temporal relationship among kisspeptin and GnRH mRNA and kisspeptin content in the preoptic area (POA), GnRH content and release in the medial basal hypothalamus (MBH) and plasma LH levels under different steroid treatments. Ovariectomized rats treated with oil (OVOO), oil plus single dose of estradiol (OVOE), oil plus single dose of progesterone (OVOP), estradiol for 3 days plus oil (OVEO) or estradiol for 3 days plus progesterone (OVEP) were hourly decapitated from 10:00 to 17:00 or had the MBH microdialyzed from 09:00 to 19:00. Estradiol and progesterone acutely increased POA kisspeptin content without altering POA kisspeptin mRNA levels. Short-term exposure to both hormones stimulated MBH GnRH content, although no GnRH/LH surges had occurred. Chronic estradiol-treatment increased both kisspeptin mRNA levels and content in the POA, demonstrating that long exposure to estradiol is required to activate the whole kisspeptin synthesis machinery. This was followed by the peak in the GnRH/LH release. In estradiol-primed rats, progesterone further increased POA kisspeptin content, amplified and advanced GnRH/LH surges, with no additional change on POA kisspeptin mRNA. The data show an estradiol-induced temporal association between kisspeptin increase in the POA and GnRH/LH surges. Interestingly, the classic action of progesterone in amplifying and accelerating the GnRH/LH surges seems to occur by a mechanism which involves POA kisspeptin system.


Asunto(s)
Estradiol/metabolismo , Hormona Liberadora de Gonadotropina/efectos de los fármacos , Hormona Liberadora de Gonadotropina/metabolismo , Animales , Estradiol/farmacología , Femenino , Gonadotropinas , Hipotálamo/efectos de los fármacos , Hipotálamo Medio/efectos de los fármacos , Kisspeptinas/efectos de los fármacos , Kisspeptinas/metabolismo , Hormona Luteinizante/sangre , Ovariectomía , Área Preóptica/efectos de los fármacos , Progesterona/metabolismo , Progesterona/farmacología , Ratas , Ratas Wistar , Análisis Espacio-Temporal
7.
Endocrinology ; 157(1): 323-35, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26556532

RESUMEN

In rodents, kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) of the preoptic area are considered to provide a major stimulatory input to the GnRH neuronal network that is responsible for triggering the preovulatory LH surge. Noradrenaline (NA) is one of the main modulators of GnRH release, and NA fibers are found in close apposition to kisspeptin neurons in the RP3V. Our objective was to interrogate the role of NA signaling in the kisspeptin control of GnRH secretion during the estradiol induced LH surge in ovariectomized rats, using prazosin, an α1-adrenergic receptor antagonist. In control rats, the estradiol-induced LH surge at 17 hours was associated with a significant increase in GnRH and kisspeptin content in the median eminence with the increase in kisspeptin preceding that of GnRH and LH. Prazosin, administered 5 and 3 hours prior to the predicted time of the LH surge truncated the LH surge and abolished the rise in GnRH and kisspeptin in the median eminence. In the preoptic area, prazosin blocked the increases in Kiss1 gene expression and kisspeptin content in association with a disruption in the expression of the clock genes, Per1 and Bmal1. Together these findings demonstrate for the first time that NA modulates kisspeptin synthesis in the RP3V through the activation of α1-adrenergic receptors prior to the initiation of the LH surge and indicate a potential role of α1-adrenergic signaling in the circadian-controlled pathway timing of the preovulatory LH surge.


Asunto(s)
Regulación de la Expresión Génica , Kisspeptinas/agonistas , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Norepinefrina/metabolismo , Área Preóptica/metabolismo , Regulación hacia Arriba , Factores de Transcripción ARNTL/agonistas , Factores de Transcripción ARNTL/antagonistas & inhibidores , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Estradiol/farmacología , Terapia de Reemplazo de Estrógeno , Femenino , Fase Folicular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Kisspeptinas/antagonistas & inhibidores , Kisspeptinas/genética , Kisspeptinas/metabolismo , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Ovariectomía/efectos adversos , Proteínas Circadianas Period/agonistas , Proteínas Circadianas Period/antagonistas & inhibidores , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Prazosina/farmacología , Área Preóptica/efectos de los fármacos , Ratas Wistar , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/metabolismo , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
8.
Neuroendocrinology ; 103(6): 711-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26580201

RESUMEN

Substance P (SP) was recently reported to be expressed in human kisspeptin/neurokinin B/dynorphin (KNDy) neurons and to enhance KNDy neuron excitability in the mouse hypothalamus. We therefore examined (1) interactions of SP and kisspeptin in the mediobasal hypothalamus of adult male rhesus monkeys using immunofluorescence, and (2) the ability of SP to induce LH release in GnRH-primed, agonadal juvenile male monkeys. SP cell bodies were observed only occasionally in the arcuate nucleus (Arc), but more frequently dorsal to the Arc in the region of the premammillary nucleus. Castration resulted in an increase in the number of SP cell bodies in the Arc but not in the other regions. SP fibers innervated the Arc, where they were found in close apposition with kisspeptin perikarya in the periphery of this nucleus. Beaded SP axons projected to the median eminence, where they terminated in the external layer and intermingled with beaded kisspeptin axons. Colocalization of the two peptides, however, was not observed. Although close apposition between SP fibers and kisspeptin neurons suggest a role for SP in modulating GnRH pulse generator activity, i.v. injections of SP failed to elicit release of GnRH (as reflected by LH) in the juvenile monkey. Although the finding of structural interactions between SP and kisspeptin neurons is consistent with the notion that this tachykinin may be involved in regulating pulsatile GnRH release, the apparent absence of expression of SP in KNDy neurons suggests that this peptide is unlikely to be a fundamental component of the primate GnRH pulse generator.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo Medio , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Péptidos/administración & dosificación , Sustancia P/metabolismo , Administración Intravenosa , Animales , Castración , Relación Dosis-Respuesta a Droga , Hipotálamo Medio/citología , Hipotálamo Medio/efectos de los fármacos , Hipotálamo Medio/metabolismo , Macaca mulatta , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo
9.
Endocrinology ; 156(11): 4200-13, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26302111

RESUMEN

Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.


Asunto(s)
Dinorfinas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/sangre , Neuroquinina B/metabolismo , Neuronas/metabolismo , Animales , Femenino , Ovariectomía , Hipófisis/metabolismo , Ratas , Ratas Wistar
10.
Endocrinology ; 154(1): 363-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23150494

RESUMEN

The role of norepinephrine (NE) in regulation of LH is still controversial. We investigated the role played by NE in the positive feedback of estradiol and progesterone. Ovarian-steroid control over NE release in the preoptic area (POA) was determined using microdialysis. Compared with ovariectomized (OVX) rats, estradiol-treated OVX (OVX+E) rats displayed lower release of NE in the morning but increased release coincident with the afternoon surge of LH. OVX rats treated with estradiol and progesterone (OVX+EP) exhibited markedly greater NE release than OVX+E rats, and amplification of the LH surge. The effect of NE on LH secretion was confirmed using reverse microdialysis. The LH surge and c-Fos expression in anteroventral periventricular nucleus neurons were significantly increased in OVX+E rats dialyzed with 100 nm NE in the POA. After Fluoro-Gold injection in the POA, c-Fos expression in Fluoro-Gold/tyrosine hydroxylase-immunoreactive neurons increased during the afternoon in the A2 of both OVX+E and OVX+EP rats, in the locus coeruleus (LC) of OVX+EP rats, but was unchanged in the A1. The selective lesion of LC terminals, by intracerebroventricular N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, reduced the surge of LH in OVX+EP but not in OVX+E rats. Thus, estradiol and progesterone activate A2 and LC neurons, respectively, and this is associated with the increased release of NE in the POA and the magnitude of the LH surge. NE stimulates LH secretion, at least in part, through activation of anteroventral periventricular neurons. These findings contribute to elucidation of the role played by NE during the positive feedback of ovarian steroids.


Asunto(s)
Núcleos Talámicos Anteriores/efectos de los fármacos , Núcleos Talámicos Anteriores/metabolismo , Hormona Luteinizante/metabolismo , Norepinefrina/farmacología , Animales , Cromatografía Líquida de Alta Presión , Estradiol/farmacología , Femenino , Inmunohistoquímica , Microdiálisis , Ovariectomía , Progesterona/farmacología , Radioinmunoensayo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...