Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 3(2): 592-602, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36873698

RESUMEN

Enhancing charge-carrier dynamics is imperative to achieve efficient photoelectrodes for practical photoelectrochemical devices. However, a convincing explanation and answer for the important question which has thus far been absent relates to the precise mechanism of charge-carrier generation by solar light in photoelectrodes. Herein, to exclude the interference of complex multi-components and nanostructuring, we fabricate bulky TiO2 photoanodes through physical vapor deposition. Integrating photoelectrochemical measurements and in situ characterizations, the photoinduced holes and electrons are transiently stored and promptly transported around the oxygen-bridge bonds and 5-coordinated Ti atoms to form polarons on the boundaries of TiO2 grains, respectively. Most importantly, we also find that compressive stress-induced internal magnetic field can drastically enhance the charge-carrier dynamics for the TiO2 photoanode, including directional separation and transport of charge carriers and an increase of surface polarons. As a result, bulky TiO2 photoanode with high compressive stress displays a high charge-separation efficiency and an excellent charge-injection efficiency, leading to 2 orders of magnitude higher photocurrent than that produced by a classic TiO2 photoanode. This work not only provides a fundamental understanding of the charge-carrier dynamics of the photoelectrodes but also provides a new paradigm for designing efficient photoelectrodes and controlling the dynamics of charge carriers.

2.
Adv Mater ; 35(21): e2211894, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36905214

RESUMEN

As a widely used commodity chemical, ammonia is critical for producing nitrogen-containing fertilizers and serving as the promising zero-carbon energy carrier. Photoelectrochemical nitrogen reduction reaction (PEC NRR) can provide a solar-powered green and sustainable route for synthesis of ammonia (NH3 ). Herein, an optimum PEC system is reported with an Si-based hierarchically-structured PdCu/TiO2 /Si photocathode and well-thought-out trifluoroethanol as the proton source for lithium-mediated PEC NRR, achieving a record high NH3 yield of 43.09 µg cm-2 h-1 and an excellent faradaic efficiency of 46.15% under 0.12 MPa O2 and 3.88 MPa N2 at 0.07 V versus lithium(0/+) redox couple (vs Li0/+ ). PEC measurements coupled with operando characterization reveal that the PdCu/TiO2 /Si photocathode under N2 pressures facilitate the reduction of N2 to form lithium nitride (Li3 N), which reacts with active protons to produce NH3 while releasing the Li+ to reinitiate the cycle of the PEC NRR. The Li-mediated PEC NRR process is further enhanced by introducing small amount of O2 or CO2 under pressure by accelerating the decomposition of Li3 N. For the first time, this work provides mechanistic understanding of the lithium-mediated PEC NRR process and opens new avenues for efficient solar-powered green conversion of N2 -to-NH3 .

3.
Phys Chem Chem Phys ; 25(9): 6693-6706, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36807663

RESUMEN

The role of the oxidation state of cerium cations in a thin oxide film in the adsorption, geometry, and thermal stability of glycine molecules was studied. The experimental study was performed for a submonolayer molecular coverage deposited in vacuum on CeO2(111)/Cu(111) and Ce2O3(111)/Cu(111) films by photoelectron and soft X-ray absorption spectroscopies and supported by ab initio calculations for prediction of the adsorbate geometries, C 1s and N 1s core binding energies of glycine, and some possible products of the thermal decomposition. The molecules adsorbed on the oxide surfaces at 25 °C in the anionic form via the carboxylate oxygen atoms bound to cerium cations. A third bonding point through the amino group was observed for the glycine adlayers on CeO2. In the course of stepwise annealing of the molecular adlayers on CeO2 and Ce2O3, the surface chemistry and decomposition products were analyzed and found to relate to different reactivities of glycinate on Ce4+ and Ce3+ cations, observed as two dissociation channels via C-N and C-C bond scission, respectively. The oxidation state of cerium cations in the oxide was shown to be an important factor, which defines the properties, electronic structure, and thermal stability of the molecular adlayer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA