Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Tissue Eng ; 14: 20417314231159740, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949842

RESUMEN

In cranial flat bone fractures, spontaneous bone repair will occur only when the fracture ends are in close contact. However, in cases wherein bone discontinuity is extensive, surgical interventions are often required. To this end, autologous bone is harvested and surgically integrated into the site of fracture. Here we propose to use cartilage, as an alternative autologous source, to promote cranial fracture repair. The advantage of this approach is the potential reduction in donor site morbidity, likely due to the avascular and aneural nature of cartilage. As a first step we attempted to induce cartilage mineralization in vitro, using micromass primary chondrocyte cultures, incubated with BMP2 and/or WISP1, which were examined histologically following a 3-week culture period. Next, chondrocyte seeded collagen scaffolds were evaluated in vitro for expression profiles and ALP activity. Finally, chondrocyte-seeded collagen scaffolds were implanted in a Lewis rats 8 mm critical calvaria defect model, which was imaged via live CT for 12 weeks until sacrifice. End points were analyzed for microCT, histology, and serum levels of bone related markers. Micromass cultures exhibited an osseous inducing trend following WISP1 administration, which was maintained in chondrocyte seeded scaffolds. Accordingly, in vivo analysis was carried out to assess the impact of WISP1-pretreated chondrocytes (WCS) versus untreated chondrocytes (UCS) in calvaria defect model and compared to untreated control comprised of a defect-associated blood clot (BC) or empty collagen scaffold (CS) implant. Live CT and microCT exhibited higher mineralization volumes in critical defect implanted with UCS, with some structural improvements in WCS. Histological analysis exhibited higher anabolic bone formation in WCS and trabecular bone was detected in WCS and UCS groups. Chondrocytes implanted into critical cranial defect expedite the formation of native-like osseous tissue, especially after WISP1 priming in culture. Ultimately, these data support the use of autologous chondrocytes to repair critical maxillofacial defects.

2.
J Periodontal Res ; 56(3): 535-546, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33559894

RESUMEN

OBJECTIVE: Periodontitis is one the most common chronic inflammatory conditions, resulting in destruction of tooth-supporting tissues and leading to tooth loss. Porphyromonas gingivalis activates host macrophages to secrete pro-inflammatory cytokines and elicit tissue damage, in part by inducing NF-kappa-B transactivation. Since NFκB transactivation is negatively regulated by the Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase enzyme Sirt1, we sought to assess if RAW264.7 macrophages exposed to P. gingivalis demonstrate impaired Sirt1 activity, to ultimately induce a pro-inflammatory response. METHODS: RAW264.7 macrophages were incubated with heat- killed P. gingivalis for 2, 4, 8, and 24 h. Stimulated RAW264.7 were assessed for TNFα expression via PCR, ELISA, and ChIP analysis. Following the activation of RAW264.7 macrophages, immunoblot analysis was executed to detect modifications in Sirt1 and the NFκB subunit RelA that is essential for NFκB transcriptional activity. RESULTS: TNFα expression was elevated 4 h after exposure to P. gingivalis. ChIP confirmed that RelA was enriched in the mouse TNFα promoter 4 h following stimulation, which correlated with the increased TNFα mRNA levels. Preceding TNFα expression, we detected Phosphoserine 536 and acetylated lysine 310 of RelA after 2 hours exposure with P. gingivalis. Moreover, reduced Sirt1 activity was associated with its cleavage in RAW264.7 protein extracts, after 2 hours of P. gingivalis exposure. Blocking TLR2/4 signaling prevented Sirt1 cleavage, loss of deacetylase activity, and TNFα secretion, while co-administering CA074Me (a cathepsin B inhibitor) with P. gingivalis reduced RelA promoter enrichment, resulting in impaired TNFα expression. CONCLUSIONS: Together, the results suggest that P. gingivalis induces TNFα expression, at least in part, by enhancing cleavage of Sirt1 via a TLR-dependent signaling circuit.


Asunto(s)
Periodontitis , Porphyromonas gingivalis , Animales , Lipopolisacáridos/farmacología , Macrófagos , Ratones , FN-kappa B , Sirtuina 1 , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...