Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Pneumologie ; 2024 May 23.
Article De | MEDLINE | ID: mdl-38782000

A 43-year-old quarry worker, after being exposed to fine quartz dust for 16 years in a German quarry, is on the waiting list for a lung transplant. The inhalation of the fine dust irreversibly damaged his lungs and facilitated the occurrence of fulminant mycobacterial and fungal infections, which have already led to a unilateral pneumonectomy and increasing respiratory failure. Despite regular monitoring by the occupational health and safety board, this dramatic development of silicosis could not be prevented.

2.
Pharmaceutics ; 15(11)2023 Oct 27.
Article En | MEDLINE | ID: mdl-38004523

The treatment of drug-resistant Mycobacterium tuberculosis relies on complex antibiotic therapy. Inadequate antibiotic exposure can lead to treatment failure, acquired drug resistance, and an increased risk of adverse events. Therapeutic drug monitoring (TDM) can be used to optimize the antibiotic exposure. Therefore, we aimed to develop a single-run multiplex assay using high-performance liquid chromatography-mass spectrometry (HPLC-MS) for TDM of patients with multidrug-resistant, pre-extensively drug-resistant and extensively drug-resistant tuberculosis. A target profile for sufficient performance, based on the intended clinical application, was established and the assay was developed accordingly. Antibiotics were analyzed on a zwitterionic hydrophilic interaction liquid chromatography column and a triple quadrupole mass spectrometer using stable isotope-labeled internal standards. The assay was sufficiently sensitive to monitor drug concentrations over five half-lives for rifampicin, rifabutin, levofloxacin, moxifloxacin, bedaquiline, linezolid, clofazimine, terizidone/cycloserine, ethambutol, delamanid, pyrazinamide, meropenem, prothionamide, and para-amino salicylic acid (PAS). Accuracy and precision were sufficient to support clinical decision making (≤±15% in clinical samples and ±20-25% in spiked samples, with 80% of future measured concentrations predicted to fall within ±40% of nominal concentrations). The method was applied in the TDM of two patients with complex drug-resistant tuberculosis. All relevant antibiotics from their regimens could be quantified and high-dose therapy was initiated, followed by microbiological conversion. In conclusion, we developed a multiplex assay that enables TDM of the relevant first- and second-line anti-tuberculosis medicines in a single run and was able to show its applicability in TDM of two drug-resistant tuberculosis patients.

3.
Inn Med (Heidelb) ; 64(7): 701-707, 2023 Jul.
Article De | MEDLINE | ID: mdl-37316702

Never before have so many people around the world been simultaneously affected by tuberculosis. Tuberculosis is the leading cause of death from a bacterial infectious disease worldwide. The World Health Organization's ambitious goal from 2014 of achieving global elimination of tuberculosis does not seem realistic, but on current trends, tuberculosis could be eliminated in the European Union by 2040. Since the beginning of 2022, there have been more innovations for the treatment of tuberculosis than in no other comparable time period before. One month of rifapentine and isoniazid is effective in treating latent tuberculosis infection. However, rifapentine is licensed in the USA but not in the EU and must be imported for individual cases. The duration of the standard treatment for tuberculosis can be shortened to four months but this treatment regimen is also based on rifapentine, in addition to isoniazid, pyrazinamide, and moxifloxacin. The approval of rifapentine in Europe is a much-needed step towards shortening the treatment of tuberculosis. With new drugs an even shorter standard treatment of only 2 months is possible. The treatment of multidrug-resistant/rifampicin-resistant tuberculosis (MDR-/RR-TB) has been shortened to six months, the same length as the standard treatment available in Germany. The combination of bedaquiline, pretomanid, linezolid ± moxifloxacin, cured around 90% of affected patients were cured in studies with a treatment duration of six months. With 19 drugs in clinical trials, the treatment of tuberculosis is expected to continue to improve rapidly in the coming years.


Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Isoniazid/therapeutic use , Moxifloxacin/therapeutic use , Tuberculosis/drug therapy , Pyrazinamide/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy
5.
Clin Microbiol Infect ; 29(6): 751-757, 2023 Jun.
Article En | MEDLINE | ID: mdl-36842637

OBJECTIVES: To describe long-term treatment outcomes in patients with multi-drug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB) and validate established outcome definitions for MDR/RR-TB treatment. METHODS: Among patients with MDR/RR-TB admitted to a German MDR/RR-TB referral centre from 1 September 2002 to 29 February 2020, we compared long-term treatment outcomes derived from individual patient follow-up with treatment outcomes defined by WHO-2013, WHO-2021 and the Tuberculosis Network European Trials Group-2016. RESULTS: In a total of 163 patients (mean age, 35 years; standard deviation, 13 years; 14/163 [8.6%] living with HIV; 109/163 [66.9%] men, 149/163 [91.4%] migrating to Germany within 5 years), the treatment of culture-confirmed MDR/RR-TB was initiated. Additional drug resistance to a fluoroquinolone or a second-line injectable agent was present in 15 of the 163 (9.2%) Mycobacterium tuberculosis strains; resistance against both the drug classes was present in 29 of the 163 (17.8%) strains. The median duration of MDR/RR-TB treatment was 20 months (interquartile range, 19.3-21.6 months), with a medium of five active drugs included. The median follow-up time was 4 years (47.7 months; interquartile range, 21.7-65.8 months). Among the 163 patients, cure was achieved in 25 (15.3%), 82 (50.3%) and 95 (58.3%) patients according to the outcome definitions of WHO-2013, WHO-2021, and the Tuberculosis Network European Trials Group-2016, respectively. The lost to follow-up rate was 17 of 163 (10.4%). Death was more likely in patients living with HIV (hazard ratio, 4.28; 95% confidence interval, 1.26-12.86) and older patients (hazard ratio, 1.08; 95% confidence interval, 1.05-1.12; increment of 1 year). Overall, 101/163 (62.0%) patients experienced long-term, relapse-free cure; of those, 101/122 (82.8%) patients with a known status (not lost to-follow-up or transferred out) at follow-up. CONCLUSION: Under optimal management conditions leveraging individualized treatment regimens, long-term, relapse-free cure from MDR/RR-TB is substantially higher than cure rates defined by current treatment outcome definitions.


HIV Infections , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Male , Humans , Adult , Female , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Rifampin/therapeutic use , Treatment Outcome , HIV Infections/drug therapy
7.
ACS Infect Dis ; 8(7): 1303-1315, 2022 07 08.
Article En | MEDLINE | ID: mdl-35763439

One-fourth of the global human population is estimated to be infected with strains of the Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB). Using lipidomic approaches, we show that tuberculostearic acid (TSA)-containing phosphatidylinositols (PIs) are molecular markers for infection with clinically relevant MTBC strains and signify bacterial burden. For the most abundant lipid marker, detection limits of ∼102 colony forming units (CFUs) and ∼103 CFUs for bacterial and cell culture systems were determined, respectively. We developed a targeted lipid assay, which can be performed within a day including sample preparation─roughly 30-fold faster than in conventional methods based on bacterial culture. This indirect and culture-free detection approach allowed us to determine pathogen loads in infected murine macrophages, human neutrophils, and murine lung tissue. These marker lipids inferred from mycobacterial PIs were found in higher levels in peripheral blood mononuclear cells of TB patients compared to healthy individuals. Moreover, in a small cohort of drug-susceptible TB patients, elevated levels of these molecular markers were detected at the start of therapy and declined upon successful anti-TB treatment. Thus, the concentration of TSA-containing PIs can be used as a correlate for the mycobacterial burden in experimental models and in vitro systems and may prospectively also provide a clinically relevant tool to monitor TB severity.


Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Leukocytes, Mononuclear , Mice , Phosphatidylinositols , Stearic Acids , Tuberculosis/microbiology
8.
Genome Med ; 14(1): 52, 2022 05 19.
Article En | MEDLINE | ID: mdl-35585607

BACKGROUND: Stool is an important diagnostic specimen for tuberculosis in populations who struggle to provide sputum, such as children or people living with HIV. However, the culture of Mycobacterium tuberculosis (M. tuberculosis) complex strains from stool perform poorly. This limits the opportunity for phenotypic drug resistance testing with this specimen. Therefore, reliable molecular methods are urgently needed for comprehensive drug resistance testing on stool specimens. METHODS: We evaluated the performance of targeted next-generation sequencing (tNGS, Deeplex® Myc-TB) for the detection of mutations associated with M. tuberculosis complex drug resistance on DNA isolated from stool specimens provided by participants from a prospective cohort of patients treated for tuberculosis in Eswatini (n = 66; 56 with and 10 participants without M. tuberculosis complex DNA detected in stool by real-time quantitative PCR), and an independent German validation cohort of participants with culture-confirmed tuberculosis (n = 21). RESULTS: The tNGS assay detected M. tuberculosis complex DNA in 38 of 56 (68%) samples; for 28 of 38 (74%) samples, a full M. tuberculosis complex drug resistance prediction report was obtained. There was a high degree of concordance with sputum phenotypic drug susceptibility results (κ = 0.82). The ability to predict resistance was concentration-dependent and successful in 7/10 (70%), 18/25 (72%), and 3/21 (14%) of samples with stool PCR concentration thresholds of > 100 femtogram per microliter (fg/µl), 1 to 100 fg/µl, and < 1 fg/µl, respectively (p = 0.0004). The German cohort confirmed these results and demonstrated a similarly high concordance between stool tNGS and sputum phenotypic drug susceptibility results (κ = 0.84). CONCLUSIONS: tNGS can identify drug resistance from stool provided by tuberculosis patients. This affords the opportunity to obtain critical diagnostic information for tuberculosis patients who struggle to provide respiratory specimens.


Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Child , DNA , Humans , Mycobacterium tuberculosis/genetics , Pathology, Molecular , Prospective Studies , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/microbiology
9.
Pathog Immun ; 7(2): 189-202, 2022.
Article En | MEDLINE | ID: mdl-37207169

Introduction: The rapid diagnosis of tuberculosis recurrence can be challenging due to persistently positive detection of Mycobacterium tuberculosis-specific DNA from sputum and bronchopulmonary samples in the absence of active disease. Methods: We compared the diagnostic accuracy of the detection of M. tuberculosis-specific DNA by either Xpert (January 2010-June 2018) or Xpert Ultra (July 2018-June 2020) and M. tuberculosis-specific ELISPOT in bronchoalveolar lavage (BAL) samples with M. tuberculosis culture results from sputum or bronchopulmonary samples in patients with suspected recurrence of pulmonary tuberculosis. Results: Among 44 individuals with previous tuberculosis and a presumptive diagnosis of recurrent pulmonary tuberculosis, 4/44 (9.1%) were diagnosed with recurrent tuberculosis by culture. DNA of M. tuberculosis was detected by Xpert in BAL fluid in 1/4 (25%) individuals with recurrent tuberculosis and in 2/40 (5%) cases with past tuberculosis without recurrence, while BAL-ELISPOT with a cut-off of >4,000 early secretory antigenic target-6-specific or culture filtrate protein-10-specific interferon-γ-producing lymphocytes per 1 million BAL-lymphocytes was positive in 4/4 (100%) individuals with recurrent tuberculosis and in 2/40 (5%) cases of past tuberculosis without recurrence. Conclusion: M. tuberculosis-specific BAL-ELISPOT is more accurate than BAL-Xpert for the diagnosis of paucibacillary tuberculosis recurrence.

10.
Front Med (Lausanne) ; 8: 734901, 2021.
Article En | MEDLINE | ID: mdl-34692726

Rovalpituzumab tesirine (Rova-T), an antibody-drug conjugate directed against Delta-like protein 3 (DLL3), is under development for patients with small cell lung cancer (SCLC). DLL3 is expressed on the majority of SCLC samples. Because SCLC is rarely biopsied in the course of disease, data regarding DLL3 expression in relapses is not available. The aim of this study was to investigate the expression of DLL3 in chemorelapsed (but untreated with Rova-T) SCLC samples and compare the results with chemonaive counterparts. Two evaluation methods to assess DLL3 expression were explored. Additionally, we assessed if DLL3 expression of chemorelapsed and/or chemonaive samples has prognostic impact and if it correlates with other clinicopathological data. The study included 30 paired SCLC samples, which were stained with an anti DLL3 antibody. DLL3 expression was assessed using tumor proportion score (TPS) and H-score and was categorized as DLL3 low (TPS < 50%, H-score ≤ 150) and DLL3 high (TPS ≥ 50%, H-score > 150). Expression data were correlated with clinicopathological characteristics. Kaplan-Meier curves were used to illustrate overall survival (OS) depending on DLL3 expression in chemonaive and chemorelapsed samples, respectively, and depending on dynamics of expression during course of therapy. DLL3 was expressed in 86.6% chemonaive and 80% chemorelapsed SCLC samples without significant differences between the two groups. However, the extent of expression varied in a substantial proportion of pairs (36.6% with TPS, 43.3% with H-score), defined as a shift from low to high or high to low expression. TPS and H-score provided comparable results. There were no profound correlations with clinicopathological data. Survival analysis revealed a trend toward a more favorable OS in DLL low-expressing chemonaive SCLC (p = 0.57) and, in turn, in DLL3 high-expressing chemorelapsed SCLC (p = 0.42) as well as in SCLC demonstrating a shift from low to high expression (p = 0.56) without being statistically significant. This is the first study to investigate DLL3 expression in a large cohort of rare paired chemonaive-chemorelapsed SCLC specimens. Comparative analysis revealed that DLL3 expression was not stable during the course of therapy, suggesting therapy-based alterations. Unlike in chemonaive samples, a high DLL3 expression in chemorelapsed samples indicated a trend for a more favorable prognosis. Our results highlight the importance to investigate DLL3 in latest chemorelapsed SCLC tumor tissue.

11.
J Clin Invest ; 131(22)2021 11 15.
Article En | MEDLINE | ID: mdl-34473646

Persons living with HIV (PLWH) are at increased risk of tuberculosis (TB). HIV-associated TB is often the result of recent infection with Mycobacterium tuberculosis (M. tuberculosis) followed by rapid progression to disease. Alveolar macrophages (AMs) are the first cells of the innate immune system that engage M. tuberculosis, but how HIV and antiretroviral therapy (ART) affect the anti-mycobacterial response of AMs is not known. To investigate the impact of HIV and ART on the transcriptomic and epigenetic response of AMs to M. tuberculosis, we obtained AMs by bronchoalveolar lavage from 20 PLWH receiving ART, 16 control subjects who were HIV-free (HC), and 14 subjects who received ART as preexposure prophylaxis (PrEP) to prevent HIV infection. Following in vitro challenge with M. tuberculosis, AMs from each group displayed overlapping but distinct profiles of significantly up- and downregulated genes in response to M. tuberculosis. Comparatively, AMs isolated from both PLWH and PrEP subjects presented a substantially weaker transcriptional response. In addition, AMs from HC subjects challenged with M. tuberculosis responded with pronounced chromatin accessibility changes while AMs obtained from PLWH and PrEP subjects displayed no significant changes in their chromatin state. Collectively, these results revealed a stronger adverse effect of ART than HIV on the epigenetic landscape and transcriptional responsiveness of AMs.


Epigenesis, Genetic , HIV Infections/immunology , Macrophages, Alveolar/immunology , Mycobacterium tuberculosis/immunology , Adult , Aged , Anti-Retroviral Agents/adverse effects , Female , HIV Infections/drug therapy , Humans , Macrophages, Alveolar/metabolism , Male , Middle Aged , Pre-Exposure Prophylaxis , Transcriptome
12.
J Clin Invest ; 131(16)2021 08 16.
Article En | MEDLINE | ID: mdl-34255743

In view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB. Using genetic and pharmacological approaches, we demonstrated that lack of functional WNT6 or ACC2 significantly reduced intracellular triacylglycerol (TAG) levels and Mtb survival in macrophages. Moreover, treatment of Mtb-infected mice with a combination of a pharmacological ACC2 inhibitor and the anti-TB drug isoniazid (INH) reduced lung TAG and cytokine levels, as well as lung weights, compared with treatment with INH alone. This combination also reduced Mtb bacterial numbers and the size of mononuclear cell infiltrates in livers of infected mice. In summary, our findings demonstrate that Mtb exploits WNT6/ACC2-induced storage of TAGs in macrophages to facilitate its intracellular survival, a finding that opens new perspectives for host-directed adjunctive treatment of pulmonary TB.


Acetyl-CoA Carboxylase/metabolism , Macrophages/metabolism , Macrophages/microbiology , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Proto-Oncogene Proteins/metabolism , Triglycerides/metabolism , Wnt Proteins/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Animals , Antitubercular Agents/administration & dosage , Enzyme Inhibitors/administration & dosage , Foam Cells/metabolism , Host Microbial Interactions/drug effects , Host Microbial Interactions/physiology , Humans , Isoniazid/administration & dosage , Lung/drug effects , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/drug effects , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Signal Transduction/drug effects , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/microbiology , Wnt Proteins/deficiency , Wnt Proteins/genetics
13.
Clin Infect Dis ; 73(7): 1194-1202, 2021 10 05.
Article En | MEDLINE | ID: mdl-33900387

BACKGROUND: Comprehensive and reliable drug susceptibility testing (DST) is urgently needed to provide adequate treatment regimens for patients with multidrug-resistant/rifampicin-resistant tuberculosis (MDR/RR-TB). We determined whether next-generation sequencing (NGS) analysis of Mycobacterium tuberculosis complex isolates and genes implicated in drug resistance can guide the design of effective MDR/RR-TB treatment regimens. METHODS: NGS-based genomic DST predictions of M. tuberculosis complex isolates from MDR/RR-TB patients admitted to a TB reference center in Germany between 1 January 2015 and 30 April 2019 were compared with phenotypic DST results of mycobacteria growth indicator tubes (MGIT). Standardized treatment algorithms were applied to design individualized therapies based on either genomic or phenotypic DST results, and discrepancies were further evaluated by determination of minimal inhibitory drug concentrations (MICs) using Sensititre MYCOTBI and UKMYC microtiter plates. RESULTS: In 70 patients with MDR/RR-TB, agreement among 1048 pairwise comparisons of genomic and phenotypic DST was 86.3%; 76 (7.2%) results were discordant, and 68 (6.5%) could not be evaluated due to the presence of polymorphisms with yet unknown implications for drug resistance. Importantly, 549 of 561 (97.9%) predictions of drug susceptibility were phenotypically confirmed in MGIT, and 27 of 64 (42.2%) false-positive results were linked to previously described mutations mediating a low or moderate MIC increase. Virtually all drugs (99.0%) used in combination therapies that were inferred from genomic DST were confirmed to be susceptible by phenotypic DST. CONCLUSIONS: NGS-based genomic DST can reliably guide the design of effective MDR/RR-TB treatment regimens.


Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Tuberculosis, Multidrug-Resistant/drug therapy
14.
Eur Respir J ; 58(3)2021 09.
Article En | MEDLINE | ID: mdl-33574078

BACKGROUND: The World Health Organization recommends standardised treatment durations for patients with tuberculosis (TB). We identified and validated a host-RNA signature as a biomarker for individualised therapy durations for patients with drug-susceptible (DS)- and multidrug-resistant (MDR)-TB. METHODS: Adult patients with pulmonary TB were prospectively enrolled into five independent cohorts in Germany and Romania. Clinical and microbiological data and whole blood for RNA transcriptomic analysis were collected at pre-defined time points throughout therapy. Treatment outcomes were ascertained by TBnet criteria (6-month culture status/1-year follow-up). A whole-blood RNA therapy-end model was developed in a multistep process involving a machine-learning algorithm to identify hypothetical individual end-of-treatment time points. RESULTS: 50 patients with DS-TB and 30 patients with MDR-TB were recruited in the German identification cohorts (DS-GIC and MDR-GIC, respectively); 28 patients with DS-TB and 32 patients with MDR-TB in the German validation cohorts (DS-GVC and MDR-GVC, respectively); and 52 patients with MDR-TB in the Romanian validation cohort (MDR-RVC). A 22-gene RNA model (TB22) that defined cure-associated end-of-therapy time points was derived from the DS- and MDR-GIC data. The TB22 model was superior to other published signatures to accurately predict clinical outcomes for patients in the DS-GVC (area under the curve 0.94, 95% CI 0.9-0.98) and suggests that cure may be achieved with shorter treatment durations for TB patients in the MDR-GIC (mean reduction 218.0 days, 34.2%; p<0.001), the MDR-GVC (mean reduction 211.0 days, 32.9%; p<0.001) and the MDR-RVC (mean reduction of 161.0 days, 23.4%; p=0.001). CONCLUSION: Biomarker-guided management may substantially shorten the duration of therapy for many patients with MDR-TB.


Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Adult , Antitubercular Agents/therapeutic use , Duration of Therapy , Humans , Transcriptome , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy
16.
Front Immunol ; 11: 566608, 2020.
Article En | MEDLINE | ID: mdl-33117351

Tuberculosis is a bacterial infectious disease that is mainly transmitted from human to human via infectious aerosols. Currently, tuberculosis is the leading cause of death by an infectious disease world-wide. In the past decade, the number of patients affected by tuberculosis has increased by ~20 percent and the emergence of drug-resistant strains of Mycobacterium tuberculosis challenges the goal of elimination of tuberculosis in the near future. For the last 50 years, management of patients with tuberculosis has followed a standardized management approach. This standardization neglects the variation in human susceptibility to infection, immune response, the pharmacokinetics of drugs, and the individual duration of treatment needed to achieve relapse-free cure. Here we propose a package of precision medicine-guided therapies that has the prospect to drive clinical management decisions, based on both host immunity and M. tuberculosis strains genetics. Recently, important scientific discoveries and technological advances have been achieved that provide a perspective for individualized rather than standardized management of patients with tuberculosis. For the individual selection of best medicines and host-directed therapies, personalized drug dosing, and treatment durations, physicians treating patients with tuberculosis will be able to rely on these advances in systems biology and to apply them at the bedside.


Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis , Precision Medicine , Tuberculosis/drug therapy , Animals , Humans
17.
BMC Infect Dis ; 20(1): 678, 2020 Sep 17.
Article En | MEDLINE | ID: mdl-32942990

BACKGROUND: Tuberculosis (TB) control is a primary global health priority but the goal to eliminate TB is being threatened by the increase in incidence of multidrug-resistant tuberculosis (MDR-TB). With this series of seven MDR-TB cases in migrant patients with identical Mycobacterium tuberculosis strains we aim to illustrate the challenges encountered during therapy and follow-up: language barriers, access to care for migrant patients, depression due to isolation, adverse reactions to the treatment, management of pediatric TB, further contact tracing. We also discuss best practices for the management of complex MDR-TB cases in settings with low overall TB incidence focusing on modern diagnostic assays and an individualized and an interdisciplinary therapeutic approach. METHODS: We describe a case series of seven consecutively diagnosed MDR-TB patients, six of them treated at our tertiary care hospital between May 2018 and March 2020. Epidemiologic data was gained by semi-structured patient interviews and reconstruction of the migration route. The origin of the cluster was confirmed by genotyping of the TB-strains. RESULTS: Six related patients were diagnosed with pulmonary MDR-TB between May and August 2018. All had a positive Interferon-Gamma-Release Assay (IGRA), in five patients sputum microscopy was positive for acid-fast bacilli (AFB). The genetic and phenotypical drug susceptibility test did not match with MDR-TB strains from an East-African origin. The index patient was identified through genetical fingerprinting. By changing the therapy to a modern MDR-TB regime and using an interdisciplinary and culture-sensitive approach, all patients improved clinically and radiologically. CONCLUSION: Human migration plays an important role for the global spread of MDR-TB in low incidence countries. Early case detection and adequate treatment are key to prevention of outbreaks. Especially language barriers and complex migration routes make genotyping of TB-strains a crucial tool to identify cases clusters, the potential index patient and transmission dynamics. We are fortunate enough to experience times in which new TB-antibiotics were made available and in which molecular assays revolutionized TB-diagnostics. We need to take advantage of that and develop personalized therapies for patients suffering from drug resistant TB.


Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/drug therapy , Adult , Antitubercular Agents/adverse effects , Child, Preschool , Drug Resistance, Multiple, Bacterial/genetics , Female , Germany/epidemiology , Humans , Incidence , Infant , Male , Microbial Sensitivity Tests , Middle Aged , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Phenotype , Pregnancy , Sputum/microbiology , Sudan , Transients and Migrants , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Young Adult
18.
iScience ; 23(6): 101206, 2020 Jun 26.
Article En | MEDLINE | ID: mdl-32535021

Mycobacterium tuberculosis subverts host immunity to proliferate within host tissues. Non-selective transient receptor potential (TRP) ion channels are involved in host responses and altered upon bacterial infections. Altered expression and localization of TRPV4 in macrophages upon virulent M. tuberculosis infection together with differential distribution of TRPV4 in human tuberculosis (TB) granulomas indicate a role of TRPV4 in TB. Compared with wild-type mice, Trpv4-deficient littermates showed transiently higher mycobacterial burden and reduced proinflammatory responses. In the absence of TRPV4, activation failed to render macrophages capable of controlling mycobacteria. Surprisingly, Trpv4-deficient mice were superior to wild-type ones in controlling M. tuberculosis infection in the chronic phase. Thus, Trpv4 is important in host responses to mycobacteria, although with opposite functions early versus late in infection. Ameliorated chronic infection in the absence of Trpv4 and its expression in human TB lesions indicate TRPV4 as putative target for host-directed therapy.

20.
Internist (Berl) ; 60(11): 1155-1175, 2019 Nov.
Article De | MEDLINE | ID: mdl-31641790

Tuberculosis is a bacterial infectious disease that is usually transmitted by inhalation of droplets containing the bacteria. The World Health Organization (WHO) estimates that approximately 10 million patients were newly diagnosed with tuberculosis in 2017. Rapid diagnosis relies on a combination of imaging and microbiological, molecular, and, rarely, immunological tests. Genotypic methods enable early diagnosis and allow highly accurate prediction of drug resistance. Phenotypic (culture-based) methods are the diagnostic gold standard. Standard management of patients with pan drug-susceptible pulmonary tuberculosis includes a combination of rifampicin, isoniazid, ethambutol and pyrazinamide for 2 months followed by rifampicin and isoniazid for additional 4 months, which leads to cure rates of >80%. With individualized treatment schemes, similar cure rates can be achieved for patients with multidrug-resistant tuberculosis.


Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Ethambutol/therapeutic use , Humans , Isoniazid/therapeutic use , Pyrazinamide/therapeutic use , Rifampin/therapeutic use , Tuberculosis/microbiology , Tuberculosis, Multidrug-Resistant/microbiology
...