Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(54): 82492-82511, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35751730

RESUMEN

The present study examines the effect of medical staff's turning movements on particle concentration in the surgical zone and settlement on the patient under single large diffuser (SLD) ventilation. A computational domain representing the operating room (OR) was constructed using computer-aided design (CAD) software. The airflow and particle models were validated against the published data before conducting the case studies. The airflow in the OR was simulated using an RNG k-ε turbulence model, while the dispersion of the particles was simulated using a discrete phase model based on the Lagrangian approach. A user-defined function (UDF) code was written and compiled in the simulation software to describe the medical staff member's turning movements. In this study, three cases were examined: baseline, SLD 1, and SLD 2, with the air supply areas of 4.3 m2, 5.7 m2, and 15.9 m2, respectively. Results show that SLD ventilations in an OR can reduce the number of dispersed particles in the surgical zone. The particles that settled on the patient were reduced by 41% and 39% when using the SLD 1 and SLD 2 ventilations, respectively. The use of the larger air supply area of SLD 2 ventilation in the present study does not significantly reduce the particles that settle on a patient. Likewise, the use of SLD 2 ventilation may increase operating and maintenance costs.


Asunto(s)
Contaminación del Aire Interior , Ventilación , Humanos , Ventilación/métodos , Quirófanos , Simulación por Computador , Cuerpo Médico , Contaminación del Aire Interior/análisis , Movimientos del Aire , Microbiología del Aire
2.
Environ Sci Pollut Res Int ; 29(5): 6710-6721, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34458973

RESUMEN

In this study, a systematic procedure for establishing the relationship between particulate matter (PM) and microbial counts in four operating rooms (ORs) was developed. The ORs are located in a private hospital on the western coast of Peninsular Malaysia. The objective of developing the systematic procedure is to ensure that the correlation between the PMs and microbial counts are valid. Each of the procedures is conducted based on the ISO, IEST, and NEBB standards. The procedures involved verifying the operating parameters are air change rate, room differential pressure, relative humidity, and air temperature. Upon verifying that the OR parameters are in the recommended operating range, the measurements of the PMs and sampling of the microbes were conducted. The TSI 9510-02 particle counter was used to measure three different sizes of PMs: PM 0.5, PM 5, and PM 10. The MAS-100ECO air sampler was used to quantify the microbial counts. The present study confirms that PM 0.5 does not have an apparent positive correlation with the microbial count. However, the evident correlation of 7% and 15% were identified for both PM 5 and PM 10, respectively. Therefore, it is suggested that frequent monitoring of both PM 5 and PM 10 should be practised in an OR before each surgical procedure. This correlation approach could provide an instantaneous estimation of the microbial counts present in the OR.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Microbiología del Aire , Monitoreo del Ambiente , Hospitales , Quirófanos , Tamaño de la Partícula , Material Particulado/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA