Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
ACS Appl Mater Interfaces ; 16(22): 29374-29389, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38781311

In this work, new strategies were developed to prepare 1D-V2MoO8 (VMO) rods from 2D V-doped MoSe2 nanosheets (VMoSe2) with good control over morphology and crystallinity by a facile hydrothermal and calcination process. The morphological changes from 2D to 1D rods were controlled by changing the calcination temperature from 300 to 600 °C. The elimination of Se and the incorporation of O into the V-Mo structure were evaluated by TGA, p-XRD, Raman, FE-SEM, EDAX, FE-TEM, and XPS analyses. These results prove that the optimization of the physical parameters leads to changes in the crystal phase and textural properties of the prepared material. The VMoSe2 and its calcined products were investigated as electrochemical sensors for the detection of the antibacterial drug nitrofurantoin (NFT). At a calcination temperature of 500 °C, the modified screen-printed carbon electrodes (SPCE) proved to be an excellent electrochemical sensor for the detection of NFT in neutral media. Under the optimized conditions, VMO-500 °C/SPCE exhibits low detection limit (LOD) (0.015 µM), wide linear ranges (0.1-31, 47-1802 µM), good sensitivity, and selectivity. The proposed sensor was successfully used for the analysis of NFT in real samples with good recovery results. Moreover, the reduction potential of NFT agreed well with the theoretical analysis using quantum chemical calculations, with the B3LYP with 6-31G(d,p) basis set predicting an E0 value of -0.45 V. The interaction between the electrode surface and NFT via the LUMO diagram and the electrostatic potential surface is also discussed.

2.
J Pharm Sci ; 113(6): 1536-1545, 2024 Jun.
Article En | MEDLINE | ID: mdl-38147911

In today's context, prolonged exposure to sunlight is widely recognized as a threat to human health, leading to a range of adverse consequences, including skin cancers, premature skin aging, and erythema. To mitigate these risks, preventive actions mainly focus on advocating the application of sunscreen lotions and minimizing direct exposure to sunlight. This research study specifically centered on ensulizole (ENS), a prominent ingredient in sunscreens. The objective was to create inclusion complexes (ICs) with Beta-cyclodextrin (B-CD) and its hydroxypropyl derivatives (H-CD). Using phase solubility measurements, we determined that both B-CD and H-CD form 1:1 stoichiometric ICs with ENS. Proton nuclear magnetic resonance spectral (1H NMR) analysis confirmed that the phenyl portion of ENS is encapsulated within the B-CD cavity. Significant changes in surface morphology were observed during the formation of these ICs compared to ENS and CDs alone. Quantum mechanical calculations were employed to further support the formation of ICs by providing energy data. Particularly, the photostability of the ENS:B-CD ICs remained intact for up to four hours of UV exposure, with no significant alterations in the structure of ENS. Furthermore, comprehensive biocompatibility assessments yielded encouraging results, suggesting the potential application of these inclusion complexes in cosmetics as a UVB sunscreen. In summary, our research underscores the successful creation of inclusion complexes characterized by enhanced photostability and safe biocompatibility.


Solubility , Sunscreening Agents , beta-Cyclodextrins , Sunscreening Agents/chemistry , beta-Cyclodextrins/chemistry , Humans , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Biocompatible Materials/chemistry , Drug Stability
3.
Nat Commun ; 14(1): 5775, 2023 Sep 18.
Article En | MEDLINE | ID: mdl-37723149

An optoelectronic synapse having a multispectral color-discriminating ability is an essential prerequisite to emulate the human retina for realizing a neuromorphic visual system. Several studies based on the three-terminal transistor architecture have shown its feasibility; however, its implementation with a two-terminal memristor architecture, advantageous to achieving high integration density as a simple crossbar array for an ultra-high-resolution vision chip, remains a challenge. Furthermore, regardless of the architecture, it requires specific material combinations to exhibit the photo-synaptic functionalities, and thus its integration into various systems is limited. Here, we suggest an approach that can universally introduce a color-discriminating synaptic functionality into a two-terminal memristor irrespective of the kinds of switching medium. This is possible by simply introducing the molecular interlayer with long-lasting photo-enhanced dipoles that can adjust the resistance of the memristor at the light-irradiation. We also propose the molecular design principle that can afford this feature. The optoelectronic synapse array having a color-discriminating functionality is confirmed to improve the inference accuracy of the convolutional neural network for the colorful image recognition tasks through a visual pre-processing. Additionally, the wavelength-dependent optoelectronic synapse can also be leveraged in the design of a light-programmable reservoir computing system.

4.
RSC Adv ; 10(53): 31856-31862, 2020 Aug 26.
Article En | MEDLINE | ID: mdl-35518126

We investigated the electrical, optical and mechanical properties of silver (Ag) nanowire (NW) embedded into a silk fibroin (SF) substrate to create high performance, flexible, transparent, biocompatible, and biodegradable heaters for use in wearable electronics. The Ag NW-embedded SF showed a low sheet resistance of 15 Ω sq-1, high optical transmittance of 85.1%, and a small inner/outer critical bending radius of 1 mm. In addition, the Ag NW-embedded SF showed a constant resistance change during repeated bending, folding, and rolling because the connectivity of the Ag NW embedded into the SF substrate was well maintained. Furthermore, the biocompatible and biodegradable Ag NW-embedded SF substrate served as a flexible interconnector for wearable electronics. The high performance of the transparent and flexible heater demonstrated that an Ag NW-embedded SF-based heater can act as a biocompatible and biodegradable substrate for wearable heaters for the human body.

5.
Adv Sci (Weinh) ; 6(6): 1802163, 2019 Mar 20.
Article En | MEDLINE | ID: mdl-30937277

Methoxy-functionalized triphenylamine-imidazole derivatives that can simultaneously work as hole transport materials (HTMs) and interface-modifiers are designed for high-performance and stable perovskite solar cells (PSCs). Satisfying the fundamental electrical and optical properties as HTMs of p-i-n planar PSCs, their energy levels can be further tuned by the number of methoxy units for better alignment with those of perovskite, leading to efficient hole extraction. Moreover, when they are introduced between perovskite photoabsorber and low-temperature solution-processed NiO x interlayer, widely featured as an inorganic HTM but known to be vulnerable to interfacial defect generation and poor contact formation with perovskite, nitrogen and oxygen atoms in those organic molecules are found to work as Lewis bases that can passivate undercoordinated ion-induced defects in the perovskite and NiO x layers inducing carrier recombination, and the improved interfaces are also beneficial to enhance the crystallinity of perovskite. The formation of Lewis adducts is directly observed by IR, Raman, and X-ray photoelectron spectroscopy, and improved charge extraction and reduced recombination kinetics are confirmed by time-resolved photoluminescence and transient photovoltage experiments. Moreover, UV-blocking ability of the organic HTMs, the ameliorated interfacial property, and the improved crystallinity of perovskite significantly enhance the stability of PSCs under constant UV illumination in air without encapsulation.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 191: 325-335, 2018 Feb 15.
Article En | MEDLINE | ID: mdl-29055277

Imidazole-based excited state intramolecular proton transfer (ESIPT) blue fluorescent molecules, 2-(1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Cl) and 2-(1-(4-bromophenyl)-4,5-diphenyl-1H-imidazol-2-yl)phenol (BHPI-Br) were designed and synthesized by Debus-Radziszewski method through a one-pot multicomponent reaction in high yield. The synthesized compounds were fully characterized by 1H NMR, 13C NMR, FT-IR, FT-Raman, GC-Mass, and elemental analysis. The molecular structures in single crystal lattice were studied by X-ray crystallographic analysis. Because of the intramolecular hydrogen bonding, hydroxyphenyl group is planar to the central imidazole ring, while the other phenyl rings gave distorted conformations to the central heterocyclic ring. BHPI-Cl and BHPI-Br molecules showed intense ESIPT fluorescence at 480nm, because the two twisted phenyl rings on 4- and 5-positions have reduced intermolecular interaction between adjacent molecules in each crystal through a head-to-tail packing manner. Quantum chemical calculations of energies were carried out by (TD-)DFT using B3LYP/6-31G(d, p) basis set to predict the electronic absorption spectra of the compounds, and they showed good agreement between the computational and the experimental values. The thermal analyses of the synthesized molecules were also carried out by TGA/DSC method.

...