Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540051

RESUMEN

The present study aimed to investigate the effects of Moringa oleifera leaf (MLE) extract-supplemented diets on the growth, feed utilization, hematology, innate immune response, and disease resistance of Nile tilapia against Streptococcus agalactiae Biotype 2. Four hundred and fifty Nile tilapia (32.61 ± 0.2 g/fish) were randomly allocated into fifteen tanks (30 fish/tank). Different concentrations of MLE at 0%, 0.5%, 1%, 1.5%, and 2% were fed to the Nile tilapia for 30 days, and the growth, feed utilization, hematology, and innate immune response of the Nile tilapia were determined. After the feeding trial, the Nile tilapia were challenged with a S. agalactiae Biotype 2 infection, and the relative percentage of survival (RPS) was determined. Results revealed the presence of quercetin, kaempferol, and p-coumaric acid in the MLE extract, exhibiting stronger antimicrobial activity against S. agalactiae Biotype 2. The diets supplemented with the MLE-0.5 group showed a significantly higher growth, feed utilization, hematology, and innate immune response in the Nile tilapia compared to the control and other MLE groups. Additionally, the MLE-0.5 group exhibited a significantly higher RPS of the Nile tilapia against S. agalactiae Biotype 2. Therefore, MLE-0.5 can be employed as an alternative feed supplement in sustainable Nile tilapia farming to protect against S. agalactiae Biotype 2.

2.
Fish Shellfish Immunol ; 146: 109383, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246266

RESUMEN

A mucoadhesive chitosan polymer-based nanoplatform has been increasingly recognized as an effective mucosal vaccine delivery system for fish. The present study aimed to investigate the effectiveness of immersion vaccination with a chitosan polymer-based nanovaccine to elicit an immune response in serum and mucus of red tilapia and evaluate its protective efficacy after immersion challenge with a heterogenous strain of Aeromonas veronii UDRT09. Six hundred red tilapia (22 ± 1.8 g) were randomly allocated into four experimental groups: control, empty-polymeric nanoparticle (PC), formalin-killed vaccine (FKV), and chitosan polymer-based nanovaccine (CS-NV) in triplicate. The specific IgM antibody levels and their bactericidal activity were assessed in serum and mucus for 28 days after immersion vaccination and followed by immersion challenge with A. veronii. The immersion vaccine was found to be safe for red tilapia, with no mortalities occurring during the vaccination procedure. The specific IgM antibody levels and bactericidal activity against A. veronii in both serum and mucus were significantly higher in red tilapia vaccinated with CS-NV compared to the FKV and control groups at all time points. Furthermore, the serum lysozyme activity, ACH50, and total Ig levels demonstrated a significant elevation in the groups vaccinated with CS-NV compared to the FKV and control groups. Importantly, the Relative Percentage Survival (RPS) value of the CS-NV group (71 %) was significantly higher than that of the FKV (15.12 %) and PC (2.33 %) groups, respectively. This indicates that the chitosan polymer-based nanovaccine platform is an effective delivery system for the immersion vaccination of tilapia.


Asunto(s)
Quitosano , Cíclidos , Enfermedades de los Peces , Tilapia , Animales , Nanovacunas , Aeromonas veronii , Inmunidad Mucosa , Polímeros , Inmersión , Vacunación/veterinaria , Vacunación/métodos , Vacunas de Productos Inactivados , Inmunoglobulina M
3.
Foods ; 12(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38137284

RESUMEN

Stink bean, Parkia speciosa, is recognized as a significantly underutilized legume with versatile utility and diverse benefits. However, information on the impact of different processing methods, such as germination and hydrothermal cooking, is scarce on stink beans (SBs). Therefore, the current research aimed to explore the efficacy of germination (G) and hydrothermal cooking (HTC) on the physiochemical properties, proximate composition, techno-functional properties, and antioxidant potential of SB flour. Furthermore, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM) were employed to assess structural and morphological changes. The results revealed that the physiochemical properties of SB were significantly enhanced through processing, with more pronounced improvements observed during germination. Additionally, SBG exhibited a significantly higher protein content and lower fat content compared to SBHTC and stink bean raw (SBR). Moreover, techno-functional properties such as color intensity, least gelation concentration, and pasting properties were significantly improved in SBG compared to SBHTC and SBR. FTIR analysis of SBG and SBHTC indicated structural modifications in the lipid, protein, and carbohydrate molecules. FESEM examination revealed morphological changes in SBG and SBHTC when compared to SBR. Importantly, SBG exhibited higher antioxidant activity and total phenolic content in comparison to SBHTC and SBR. Therefore, processed SB flour can be incorporated and utilized in product development, highlighting its potential as a plant-based protein source for protein-rich breakfast bars and cookies.

4.
Animals (Basel) ; 13(11)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37889734

RESUMEN

Nanotechnology can enhance nutrient delivery and bioavailability; hence, it has recently been considered the most practical alternative technology for nutritional supplements and disease control in fish farming. The present study was designed to evaluate the effects of mangosteen peel extract loaded in nanoemulsion (MSNE) on the inhibition of A. veronii (in vitro) and in vivo growth performance, serum biochemical parameters, the immune response, and the disease resistance of Nile tilapia (Oreochromis niloticus) against A. veronii challenge. The particle size, polydispersity index, and particle surface charge of MSNE were 151.9 ± 1.4 nm, >0.3, and -30 mV, respectively. Furthermore, MSNE, mangosteen peel extract (MPE), and nanoemulsion (NE) improved the antimicrobial activity against A. veronii. Fish fed MSNE, MPE, and NE-supplemented diets had a significantly lower (p < 0.05) feed conversion ratio (FCR) and higher specific growth rate (SGR) than fish fed the control diet. Furthermore, the MSNE had significantly higher serum glucose and protein levels than the control group in Nile tilapia. Total immunoglobulin, serum lysozyme, alternative complement activity, and survival of Nile tilapia fed with MSNE were significantly higher (p < 0.05) than the control diet. Therefore, MSNE has the potential to be employed as a supplement in sustainable Nile tilapia farming.

5.
Fish Shellfish Immunol ; 139: 108913, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37393062

RESUMEN

Streptococcus agalactiae is one of Thailand's most important pathogens in tilapia aquaculture. Vaccination is a very effective method for protecting fish against disease in aquaculture. Oral vaccination is an interesting route for vaccine delivery as it mimics the pathogenesis of S. agalactiae and provides convenient administration for mass vaccination of fish. Moreover, gut mucosal immunity is associated with a mucus layer on the gastrointestinal tract. Therefore, this study aimed to develop a novel cationic-based nanoemulsion vaccine containing bile salts (NEB) coated by chitosan (CS) and determined its physicochemical characterization, morphology, in vitro mucoadhesive property, permeability, and acid-base tolerance. In addition, the efficacy of NEB-CS as an oral vaccination for Nile tilapia was evaluated in order to investigate the innate immune response and protection against S. agalactiae. The groups of fish consisted of: (1) deionized water as a non-vaccinated control (Control); (2) an inactivated vaccine formulated from formalin-killed bacteria (IB); and (3) a novel cationic-based nanoemulsion vaccine containing bile salts (NEB) coated by chitosan (CS). The control, IB, and NEB-CS were incorporated into commercial feed pellets and fed to Nile tilapia. In addition, we evaluated the serum bactericidal activity (SBA) for 14 days post-vaccination (dpv) and protective efficacy for 10 days post-challenge, respectively. The mucoadhesiveness, permeability, and absorption within the tilapia intestine were also assessed in vivo. The NEB-CS vaccine appeared spherical, with the nanoparticles having a size of 454.37 nm and a positive charge (+47.6 mV). The NEB-CS vaccine had higher levels of mucoadhesiveness and permeability than the NEB (p < 0.05). The relative percent survival (RPS) of IB and NEB-CS, when administered orally to fish, was 48% and 96%, respectively. Enhanced SBA was noted in the NEB-CS and IB vaccine groups compared to the control group. The results demonstrate that a feed-based NEB-CS can improve the mucoadhesiveness, permeability, and protective efficacy of the vaccine, and appear to be a promising approach to protecting tilapia in aquaculture against streptococcosis.


Asunto(s)
Quitosano , Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Tilapia , Animales , Streptococcus agalactiae , Vacunas Bacterianas , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/veterinaria
6.
Animals (Basel) ; 13(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37106927

RESUMEN

The aim of the present study was to optimize a masculinization platform for the production of all-male red tilapia fry by oral administration of 30 and 60 ppm of MT and alkyl polyglucoside nanostructured lipid carriers (APG-NLC) loaded with MT, respectively, for 14 and 21 days. The characterization, encapsulation efficiency and release kinetics of MT in lipid-based nanoparticles were assessed in vitro. The results showed that the MT-loaded nanoparticles were spherical, ranging from 80 to 125 nm in size, and had a negative charge with a narrow particle distribution. The APG-NLC loaded with MT provided higher physical stability and encapsulation efficacy than the NLC. The release rate constants of MT from MT-NLC and MT-APG-NLC were higher than those of free MT, which is insoluble in aqueous media. There was no significant difference in survival between the fish administered MT or the those fed orally with MT-APG-NLC fish. According to the logistic regression analysis, the sex reversal efficacy of MT-APG-NLC (30 ppm) and MT (60 ppm), resulted in significantly higher numbers of males after 21 days of treatment compared with the controls. The production cost of MT-APG-NLC (30 ppm) after 21 days of treatment was reduced by 32.9% compared with the conventional MT treatment group (60 ppm). In all the treatments, the length-weight relationship (LWR) showed negatively allomeric growth behavior (b < 3), with a relative condition factor (Kn) of more than 1. Therefore, MT-APG-NLC (30 ppm) would seem to be a promising, cost-effective way to reduce the dose of MT used for the masculinization of farmed red tilapia.

7.
Animals (Basel) ; 12(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36290267

RESUMEN

The aim of the present study was to evaluate the effects of a Jerusalem artichoke-supplemented diet on the blood chemistry, growth performance, intestinal morphology, expression of antioxidant-related genes, and disease resistance against Aeromonas veronii challenge in juvenile red tilapia. A completely randomized design (CRD) was followed to feed red tilapias with three experimental diets: control, 5.0 g/kg JA-supplemented (JA5), or 10.0 g/kg JA-supplemented (JA10) diets in triplicates for 4 weeks. The results revealed that the growth performance, weight gain (WG), specific growth rate (SGR), and average daily gain (ADG) of fish fed diets JA5 and JA10 were significantly higher (p < 0.05) than those of fish fed the control diet. Fish fed the control diet had significantly higher T-bilirubin, D-bilirubin, and ALT in blood serum than fish fed JA5 and JA10, as well as higher BUN than fish fed JA5. The number of goblet cells in the proximal and distal parts of the intestine revealed that the number of acid, neutral, and double-staining mucous cells of fish fed diets JA5 and JA10 was significantly higher (p < 0.05) than in fish fed the control diet. The diets including the prebiotic (JA5 and JA10) were associated with a significant increase in the expression of gpx1 and gst antioxidant-related genes and disease resistance against A. veronii in juvenile red tilapia. Therefore, JA5 and JA10 can be employed as promising prebiotics for sustainable red tilapia farming.

8.
Mar Drugs ; 20(8)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35892937

RESUMEN

Various seaweed sulfated polysaccharides have been explored for antimicrobial application. This study aimed to evaluate the antibacterial activity of the native Gracilaria fisheri sulfated galactans (NSG) and depolymerized fractions against the marine pathogenic bacteria Vibrio parahaemolyticus and Vibrio harveyi. NSG was hydrolyzed in different concentrations of H2O2 to generate sulfated galactans degraded fractions (SGF). The molecular weight, structural characteristics, and physicochemical parameters of both NSG and SGF were determined. The results revealed that the high molecular weight NSG (228.33 kDa) was significantly degraded to SGFs of 115.76, 3.79, and 3.19 kDa by hydrolysis with 0.4, 2, and 10% H2O2, respectively. The Fourier transformed spectroscopy (FTIR) and 1H- and 13C-Nuclear magnetic resonance (NMR) analyses demonstrated that the polysaccharide chain structure of SGFs was not affected by H2O2 degradation, but alterations were detected at the peak positions of some functional groups. In vitro study showed that SGFs significantly exerted a stronger antibacterial activity against V. parahaemolyticus and V. harveyi than NSG, which might be due to the low molecular weight and higher sulfation properties of SGF. SGF disrupted the bacterial cell membrane, resulting in leakage of intracellular biological components, and subsequently, cell death. Taken together, this study provides a basis for the exploitation and utilization of low-molecular-weight sulfated galactans from G. fisheri to prevent and control the shrimp pathogens.


Asunto(s)
Gracilaria , Rhodophyta , Vibrio parahaemolyticus , Antibacterianos/farmacología , Galactanos/química , Galactanos/farmacología , Gracilaria/química , Peróxido de Hidrógeno/farmacología , Polisacáridos/farmacología , Sulfatos , Vibrio
9.
Foods ; 11(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35804637

RESUMEN

The present study was undertaken to analyze the impact of germination (NBG) and hydrothermal cooking (NBHTC) on the nutritional profile and physicochemical, functional and microstructural properties of Nitta bean (Parkia timoriana) (NBR) seeds. Results demonstrated that the highest crude protein and fat content could be found in NBG and NBHTC, whereas the ash content was significantly higher in NBG. Compared to NBHTC and NBR, NBG has higher emulsion capacity and stability, with values determined to be 58.33 ± 1.67 and 63.89 ± 2.67, respectively. In addition, the highest color intensity was also reported for NBG, followed by NBHTC and NBR. Likewise, NBG showed complete gel formation at a lower concentration (12 g/100 mL) than NBR flour (18 g/100 mL). Furthermore, structural changes in the lipid, protein, and carbohydrate molecules of NBG and NBHTC were evidenced by FTIR studies. Morphological changes were noticed in different samples during microscopic observations subjected to germination and hydrothermal treatment. In contrast to NBR and NBHTC, NBG showed the highest total polyphenol content, ORAC antioxidant, and DPPH radical scavenging activity, which demonstrated the potential utilization of Nitta bean flour as a natural plant-based protein source in food security product formulations.

10.
Foods ; 11(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37430911

RESUMEN

Whiteleg shrimp (Penaeus vannamei) have been vulnerable to the stress induced by different aquaculture operations such as capture, handling, and transportation. In this study, we developed a novel clove oil-nanostructured lipid carrier (CO-NLC) to enhance the water-soluble capability and improve its anesthetic potential in whiteleg shrimp. The physicochemical characteristics, stability, and drug release capacity were assessed in vitro. The anesthetic effect and biodistribution were fully investigated in the shrimp body as well as the acute multiple-dose toxicity study. The average particle size, polydispersity index, and zeta potential value of the CO-NLCs were 175 nm, 0.12, and -48.37 mV, respectively, with a spherical shape that was stable for up to 3 months of storage. The average encapsulation efficiency of the CO-NLCs was 88.55%. In addition, the CO-NLCs were able to release 20% of eugenol after 2 h, which was lower than the standard (STD)-CO. The CO-NLC at 50 ppm observed the lowest anesthesia (2.2 min), the fastest recovery time (3.3 min), and the most rapid clearance (30 min) in shrimp body biodistribution. The results suggest that the CO-NLC could be a potent alternative nanodelivery platform for increasing the anesthetic activity of clove oil in whiteleg shrimp (P. vannamei).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...