Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 14358, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873883

RESUMEN

Diatoms are the largest group of heterokont algae with more than 100,000 species. As one of the single-celled photosynthetic organisms that inhabit marine, aquatic and terrestrial ecosystems, diatoms contribute ~ 45% of global primary production. Despite their ubiquity and environmental significance, very few diatom plastid genomes (plastomes) have been sequenced and studied. This study explored patterns of nucleotide substitution rates of diatom plastids across the entire suite of plastome protein-coding genes for 40 taxa representing the major clades. The highest substitution rate was lineage-specific within the araphid 2 taxon Astrosyne radiata and radial 2 taxon Proboscia sp. Rate heterogeneity was also evident in different functional classes and individual genes. Similar to land plants, proteins genes involved in photosynthetic metabolism have lower synonymous and nonsynonymous substitutions rates than those involved in transcription and translation. Significant positive correlations were identified between substitution rates and measures of genomic rearrangements, including indels and inversions, which is a similar result to what was found in legume plants. This work advances the understanding of the molecular evolution of diatom plastomes and provides a foundation for future studies.


Asunto(s)
Secuencia de Bases/genética , Diatomeas/citología , Genoma de Plastidios , Nucleótidos/genética , Plastidios/genética , Proteínas/genética , Diatomeas/genética , Ecosistema , Evolución Molecular , Orden Génico , Genes Esenciales , Heterogeneidad Genética , Secuencias Invertidas Repetidas , Fotosíntesis/genética , Filogenia
2.
PLoS One ; 14(11): e0224336, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31682609

RESUMEN

The study underpins barcode characterization of insect species collected from Saudi Arabia and explored functional constraints during evolution at the DNA and protein levels to expect the possible mechanisms of protein evolution in insects. Codon structure designated AT-biased insect barcode of the cytochrome C oxidase I (COI). In addition, the predicted 3D structure of COI protein indicated tyrosine in close proximity with the heme ligand, depicted substitution to phenylalanine in two Hymenopteran species. This change resulted in the loss of chemical bonding with the heme ligand. The estimated nucleotide substitution matrices in insect COI barcode generally showed a higher probability of transversion compared with the transition. Computations of codon-by-codon nonsynonymous substitutions in Hymenopteran and Hemipteran species indicated that almost half of the codons are under positive evolution. Nevertheless, codons of COI barcode of Coleoptera, Lepidoptera and Diptera are mostly under purifying selection. The results reinforce that codons in helices 2, 5 and 6 and those in loops 2-3 and 5-6 are mostly conserved and approach strong purifying selection. The overall results argue the possible evolutionary position of Hymenopteran species among those of other insects.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Evolución Molecular , Himenópteros/genética , Proteínas de Insectos/genética , Sustitución de Aminoácidos , Animales , Código de Barras del ADN Taxonómico , Especiación Genética , Filogenia , Arabia Saudita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA