Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
2.
Front Cell Infect Microbiol ; 13: 1285676, 2023.
Article En | MEDLINE | ID: mdl-38274739

Purpose: Corneal infections are a leading cause of visual impairment and blindness worldwide. Here we applied high-resolution transcriptomic profiling to assess the general and pathogen-specific molecular and cellular mechanisms during human corneal infection. Methods: Clinical diagnoses of herpes simplex virus (HSV) (n=5) and bacterial/fungal (n=5) keratitis were confirmed by histology. Healthy corneas (n=7) and keratoconus (n=4) samples served as controls. Formalin-fixed, paraffin-embedded (FFPE) human corneal specimens were analyzed using the 3' RNA sequencing method Massive Analysis of cDNA Ends (MACE RNA-seq). The cellular host response was investigated using comprehensive bioinformatic deconvolution (xCell and CYBERSORTx) analyses and by integration with published single cell RNA-seq data of the human cornea. Results: Our analysis identified 216 and 561 genes, that were specifically overexpressed in viral or bacterial/fungal keratitis, respectively, and allowed to distinguish the two etiologies. The virus-specific host response was driven by adaptive immunity and associated molecular signaling pathways, whereas the bacterial/fungal-specific host response mainly involved innate immunity signaling pathways and cell types. We identified several genes and pathways involved in the host response to infectious keratitis, including CXCL9, CXCR3, and MMP9 for viral, and S100A8/A9, MMP9, and the IL17 pathway for bacterial/fungal keratitis. Conclusions: High-resolution molecular profiling provides new insights into the human corneal host response to viral and bacterial/fungal infection. Pathogen-specific molecular profiles may provide the foundation for novel diagnostic biomarker and therapeutic approaches that target inflammation-induced damage to corneal host cells with the goal to improve the outcome of infectious keratitis.


Corneal Ulcer , Eye Infections, Bacterial , Eye Infections, Fungal , Keratitis , Humans , Matrix Metalloproteinase 9 , Keratitis/genetics , Keratitis/diagnosis , Cornea/microbiology , Cornea/pathology , Inflammation/pathology
3.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article En | MEDLINE | ID: mdl-36498835

Corneal transplantation is one of the most common forms of tissue transplantation worldwide. Donor corneal tissue used in transplantation is provided by eye banks, which store the tissue in culture medium after procurement. To date, the effects of cell culture on human corneal tissue have not been fully elucidated. Using the 3' RNA sequencing method for massive analysis of cDNA ends (MACE), we show that cultivation of corneal tissue leads to significant changes in a variety of molecular processes in human corneal tissue that go well beyond aspects of previously known culture effects. Functionally grouped network analysis revealed nine major groups of biological processes that were affected by corneal organ culture, among them keratinization, hypoxia, and angiogenesis, with genes from each group being affected by culture time. A cell type deconvolution analysis revealed significant modulations of the corneal immune cell profile in a time dependent manner. The results suggest that current culture conditions should be further refined and that prolonged cultivation may be detrimental. Recently, we showed that MACE enables transcriptional profiling of formalin-fixed and paraffin-embedded (FFPE) conjunctival tissue with high accuracy even after more than 10 years of storage. Here we demonstrate that MACE provides comparable results for native and FFPE corneal tissue, confirming that the technology is suitable for transcriptome analysis of a wide range of archived diseased corneal samples stored in histological archives. Finally, our data underscore the feasibility of bioinformatics cell-type enrichment analysis in bulk RNA-seq data to profile immune cell composition in fixed and archived corneal tissue samples, for which RNA-seq analysis of individual cells is often not possible.


Eye Banks , Organ Preservation , Humans , Organ Culture Techniques , Organ Preservation/methods , Eye Banks/methods , Tissue Donors , Cornea , DNA, Complementary
4.
JMIR Public Health Surveill ; 7(3): e22645, 2021 03 03.
Article En | MEDLINE | ID: mdl-33656450

BACKGROUND: Infectious conjunctivitis is contagious and may lead to an outbreak. Prevention systems can help to avoid an outbreak. OBJECTIVE: We aimed to evaluate if Google search data on conjunctivitis and associated terms can be used to estimate the incidence and if the data can provide an estimation for outbreaks. METHODS: We obtained Google search data over 4 years for the German term for conjunctivitis ("Bindehautentzündung") and 714 associated terms in 12 selected German cities and Germany as a whole using the Google AdWords Keyword Planner. The search volume from Freiburg was correlated with clinical data from the Freiburg emergency practice (Eye Center University of Freiburg). RESULTS: The search volume for the German term for conjunctivitis in Germany as a whole and in the 12 German cities showed a highly uniform seasonal pattern. Cross-correlation between the temporal search frequencies in Germany as a whole and the 12 selected cities was high without any lag. Cross-correlation of the search volume in Freiburg with the frequency of conjunctivitis (International Statistical Classification of Diseases and Related Health Problems [ICD] code group "H10.-") from the centralized ophthalmologic emergency practice in Freiburg revealed a considerable temporal association, with the emergency practice lagging behind the frequency. Additionally, Pearson correlation between the count of patients per month and the count of searches per month in Freiburg was statistically significant (P=.04). CONCLUSIONS: We observed a close correlation between the Google search volume for the signs and symptoms of conjunctivitis and the frequency of patients with a congruent diagnosis in the Freiburg region. Regional deviations from the nationwide average search volume may therefore indicate a regional outbreak of infectious conjunctivitis.


Conjunctivitis/epidemiology , Disease Outbreaks , Medical Records , Public Health Surveillance/methods , Search Engine/statistics & numerical data , Cities/epidemiology , Germany/epidemiology , Humans , Incidence , Reproducibility of Results , Retrospective Studies
5.
Mol Immunol ; 128: 188-194, 2020 12.
Article En | MEDLINE | ID: mdl-33137607

PURPOSE: Immune reactions following corneal transplantation are the most common cause of transplant failure. However, the underlying mechanisms of corneal graft rejection are not yet fully understood but increasing evidence points to a crucial role of the innate immune system in this context. Using a human in vitro model, we aimed to assess the response of human macrophages to stimulation with human corneal tissue and whether corneal endothelial cells (CEC) have immune-modulating properties. METHODS: Human monocytes were isolated from peripheral blood mononuclear cells and differentiated into monocyte-derived macrophages (MDM). A standardized protocol was used for disaggregation of human corneas into fragments of defined sizes. MDMs were stimulated using processed corneal material with or without CEC. Lipopolysaccharide (LPS) or interferon-gamma (IFNγ) served as controls. RNA sequencing was applied to analyze the impact of differential stimulation of MDMs on their transcriptional profile. RNA sequencing results were validated using digital PCR. RESULTS: The transcriptional profile of MDMs was significantly modulated by the type of stimulus used for MDM activation as well as by the individual MDM donor. LPS- or IFNγ-stimulation resulted in distinct transcriptional alterations compared to unstimulated MDMs including an upregulation of various cytokines such as CCL3, 4, 5, 19 or CXCL9. Corneal tissue induced the differential expression of 45 genes when compared to unstimulated MDMs, with several metallothioneins (MTs) among the upregulated factors (MT1A, MT1E, MT1F, MT1G, MT1H, MT1L, MT1M, MT1X, MT2A). This effect was independent of the presence or absence of CEC. PCR validation confirmed induction of 3 different metallothioneins (MT1G, MT1H and MT2A) in MDMs stimulated by corneal tissue. CONCLUSIONS: The MDM in vitro model proved to be a robust tool to study the effects of LPS, IFNγ and corneal tissue homogenates on the transcriptional activity of MDM. Human macrophages showed a distinct upregulation of various MTs when challenged with human corneal allogen with or without corneal endothelium, which might have an immune-modulatory effect. As a general observation, it appears that in MDM-based studies a significant donor-dependent effect on the transcriptional profile of MDMs needs to be considered and adjusted before downstream analysis.


Cornea/physiology , Macrophages/physiology , Metallothionein/genetics , Monocytes/physiology , Transcription, Genetic/genetics , Adult , Aged , Aged, 80 and over , Cell Differentiation/genetics , Cells, Cultured , Corneal Transplantation/methods , Cytokines/genetics , Endothelial Cells/physiology , Female , Humans , Interferon-gamma/genetics , Leukocytes, Mononuclear/physiology , Lipopolysaccharides/immunology , Male , Middle Aged , Up-Regulation/genetics , Young Adult
6.
PLoS One ; 13(4): e0194855, 2018.
Article En | MEDLINE | ID: mdl-29617399

PURPOSE: To study distinct aspects of human monocyte-derived macrophage (MDM) activation by human corneal tissue as a possible initial stage in human corneal allograft rejection. METHODS: Human monocytes were isolated from peripheral blood mononuclear cells (PBMC) and differentiated into MDM. Human corneas with or without endothelium were fragmented using a standardized protocol. MDM were stimulated with human corneal fragments, corneal fragment supernatant, lipopolysaccharide (LPS) or interferon-gamma (IFNγ), and expression profiles for 34 cytokines were determined in MDM-conditioned media using a Luminex bead-based multiplex assay. Data from clinical aqueous humour samples served for comparison and validation. To assess cell recruitment, immunogenicity of corneal endothelial cells (CEC), monocyte survival and differentiation, we applied transwell migration assays, cell viability assays and fluorescence-activated cell sorting, respectively. RESULTS: Corneal fragments induced MDM to release distinct cytokines into the medium. Media thus conditioned in vitro by stimulated MDM shared cytokine patterns, namely MCP-1, MIP-1α and MIP-1ß, with human aqueous humor samples obtained in human corneal allograft rejection. The presence of CEC in tissue fragments used for MDM stimulation attenuated the upregulation of distinct pro-inflammatory chemokines, like MCP-3 and IL-8, reduced the monocyte survival time, and diminished monocyte-to-macrophage differentiation induced by conditioned media. Distinct anti-inflammatory cytokines, like IL-4 and IL-13, were upregulated in the presence of corneal endothelium. Cornea fragment-stimulated MDMs induced recruitment of monocytes from a PBMC pool in a transwell migration model, modulated immune cell viability and promoted further immune cell recruitment and differentiation. CONCLUSIONS: Human macrophages respond to allogenic corneal tissue and generate an inflammatory milieu. This can drive further recruitment of immunocompetent cells and modulate cell survival and differentiation of the cells recruited. These observations are consistent with the hypothesis that macrophages play a significant role in the initiation of corneal transplant rejection. Our data also indicate that distinct aspects of early human corneal transplant rejection can be modelled in vitro.


Endothelium, Corneal/metabolism , Macrophages/immunology , Adult , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , Chemokines/metabolism , Culture Media, Conditioned/pharmacology , Cytokines/genetics , Cytokines/metabolism , Female , Humans , Leukocytes, Mononuclear/cytology , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/cytology , Macrophages/metabolism , Male , Middle Aged , Monocytes/cytology , Monocytes/immunology , Monocytes/metabolism , Transcriptome/drug effects , Up-Regulation/drug effects , Young Adult
...