Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Int J Nanomedicine ; 19: 3123-3142, 2024.
Article En | MEDLINE | ID: mdl-38585474

Purpose: To study whether the absence of laminar shear stress (LSS) enables the uptake of very small superparamagnetic iron oxide nanoparticles (VSOP) in endothelial cells by altering the composition, size, and barrier function of the endothelial surface layer (ESL). Methods and Results: A quantitative particle exclusion assay with living human umbilical endothelial cells using spinning disc confocal microscopy revealed that the dimension of the ESL was reduced in cells cultivated in the absence of LSS. By combining gene expression analysis, flow cytometry, high pressure freezing/freeze substitution immuno-transmission electron microscopy, and confocal laser scanning microscopy, we investigated changes in ESL composition. We found that increased expression of the hyaluronan receptor CD44 by absence of shear stress did not affect the uptake rate of VSOPs. We identified collagen as a previously neglected component of ESL that contributes to its barrier function. Experiments with inhibitor halofuginone and small interfering RNA (siRNA) demonstrated that suppression of collagen expression facilitates VSOP uptake in endothelial cells grown under LSS. Conclusion: The absence of laminar shear stress disturbs the barrier function of the ESL, facilitating membrane accessibility and endocytic uptake of VSOP. Collagen, a previously neglected component of ESL, contributes to its barrier function.


Endothelial Cells , Magnetic Iron Oxide Nanoparticles , Humans , Endothelial Cells/metabolism , Endothelium , Gene Expression Profiling , Collagen/metabolism , Stress, Mechanical , Cells, Cultured
2.
Sci Rep ; 14(1): 4253, 2024 02 21.
Article En | MEDLINE | ID: mdl-38378785

Magnetic Particle Imaging (MPI) is an advanced and powerful imaging modality for visualization and quantitative real-time detection of magnetic nanoparticles (MNPs). This opens the possibility of tracking cells in vivo once they have been loaded by MNPs. Imaging modalities such as optical imaging, X-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI) face limitations, from depth of penetration and radiation exposure to resolution and quantification accuracy. MPI addresses these challenges, enabling radiation-free tracking of MNP-loaded cells with precise quantification. However, the real-time tracking of MNP-loaded cells with MPI has not been demonstrated yet. This study establishes real-time quantitative tracking of MNP-loaded cells. Therefore, THP-1 monocytes were loaded with three different MNP systems, including the MPI gold standard Resovist and Synomag. The real-time MPI experiments reveal different MPI resolution behaviors of the three MNP systems after cellular uptake. Real-time quantitative imaging was achieved by time-resolved cell number determination and comparison with the number of inserted cells. About 95% of the inserted cells were successfully tracked in a controlled phantom environment. These results underline the potential of MPI for real-time investigation of cell migration and interaction with tissue in vivo.


Magnetic Resonance Imaging , Magnetite Nanoparticles , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Magnetics , Phantoms, Imaging
3.
Cells ; 11(18)2022 09 16.
Article En | MEDLINE | ID: mdl-36139467

Magnetic particle imaging (MPI) is a noninvasive tomographic imaging modality for the quantitative visualization of magnetic nanoparticles (MNPs) with high temporal and spatial resolution. The general capability of MPI for cell tracking (e.g., monitoring living cells labeled with MNPs) has successfully been shown. MNPs in cell culture media are often subjected to structural and magnetic changes. In addition to the deteriorating reproducibility, this also complicates the systematic study of the relationship between the MNP properties and their cellular uptake for MPI. Here, we present a method for the preparation of magnetically labeled THP-1 (Tamm-Horsfall Protein-1) monocytes that are used in MPI cell tracking. The method development was performed using two different MPI tracers, which exhibited electrostatic and steric stabilizations, respectively. In the first step, the interaction between the MNPs and cell culture media was investigated and adjusted to ensure high structural and magnetic stability. Furthermore, the influences of the incubation time, MNP concentration used for cellular uptake, and individual preparation steps (e.g., the washing of cells) were systematically investigated. Finally, the success of the developed loading method was demonstrated by the MPI measurements. The presented systematic investigation of the factors that influence the MNP loading of cells will help to develop a reliable and reproducible method for MPI monocyte tracking for the early detection of inflammation in the future.


Cell Tracking , Magnetite Nanoparticles , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Monocytes , Reproducibility of Results , Uromodulin
...