Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 13365, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922438

RESUMEN

Ultrafast electron diffraction techniques that employ relativistic electrons as a probe have been in the spotlight as a key technology for visualizing structural dynamics which take place on a time scale of a few femtoseconds to hundreds femtoseconds. These applications highly demand not only extreme beam quality in 6-D phase space such as a few nanometer transverse emittances and femtosecond duration but also equivalent beam stability. Although these utmost requirements have been demonstrated by a compact setup with a high-gradient electron gun with state-of-the-art laser technologies, this approach is fundamentally restricted by its nature for compressing the electrons in a short distance by a ballistic bunching method. Here, we propose a new methodology that pushes the limit of timing jitter beyond the state-of-the-art by utilizing consecutive RF cavities. This layout already exists in reality for energy recovery linear accelerator demonstrators. Furthermore, the demonstrators are able to provide MHz repetition rates, which are out of reach for most conventional high-gradient electron guns.

2.
Sci Rep ; 9(1): 18276, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797879

RESUMEN

The development of novel photocathode materials for ultra-bright electron sources demands efficient and cost-effective strategies that provide insight and understanding of the intrinsic material properties given the constraints of growth and operational conditions. To address this question, we propose a viable way to establish correlations between calculated and measured data on core electronic states of Cs-K-Sb materials. To do so, we combine first-principles calculations based on all-electron density-functional theory on the three alkali antimonides Cs3Sb, Cs2KSb, and CsK2Sb with x-ray photoemission spectroscopy (XPS) on Cs-K-Sb photocathode samples. Within the GW approximation of many-body perturbation theory, we obtain quantitative predictions of the band gaps of these materials, which range from 0.57 eV in Cs2KSb to 1.62 eV in CsK2Sb and manifest direct or indirect character depending on the relative potassium content. Our theoretical electronic-structure analysis also reveals that the core states of these systems have binding energies that depend only on the atomic species and their crystallographic sites, with largest shifts of the order of 2 eV and 0.5 eV associated to K 2p and Sb 3d states, respectively. This information can be correlated to the maxima in the XPS survey spectra, where such peaks are clearly visible. In this way, core-level shifts can be used as fingerprints to identify specific compositions of Cs-K-Sb materials and their relation with the measured values of quantum efficiency. Our results represent the first step towards establishing a robust connection between the experimental preparation and characterization of photocathodes, the ab initio prediction of their electronic structure, and the modeling of emission and beam formation processes.

3.
J Phys Condens Matter ; 31(1): 014002, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30500782

RESUMEN

We present a comprehensive first-principles investigation of the electronic and optical properties of CsK2Sb, a semiconducting material for ultra-bright electron sources for particle accelerators. Our study, based on density-functional theory and many-body perturbation theory, provides all the ingredients to model the emission of this material as a photocathode, including band gap, band dispersion, and optical absorption. An accurate description of these properties beyond the mean-field picture is relevant to take into account many-body effects. We discuss our results in the context of state-of-the-art electron sources for particle accelerators to set the stage towards improved modeling of quantum efficiency, intrinsic emittance, and other relevant quantities determining the macroscopic characteristics of photocathodes for ultra-bright beams.

4.
Rev Sci Instrum ; 79(9): 093301, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19044401

RESUMEN

A superconducting radio frequency (SRF) photoelectron injector is currently under construction by a collaboration of BESSY, DESY, FZD, and MBI. The project aims at the design and setup of a continuous-wave SRF injector including a diagnostics beamline for the ELBE free electron laser (FEL) and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development, serving a multitude of operation settings. In this paper the layout and the rationale of the diagnostics beamline are described. Furthermore detailed information on specific components is given, together with results from laboratory tests and data taking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...