Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(2): 312-327, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265263

RESUMEN

Reducing casein kinase 1α (CK1α) expression inhibits the growth of multiple cancer cell lines, making it a potential therapeutic target for cancer. Herein, we evaluated the antitumor activity of FPFT-2216-a novel low molecular weight compound-in lymphoid tumors and elucidated its molecular mechanism of action. In addition, we determined whether targeting CK1α with FPFT-2216 is useful for treating hematopoietic malignancies. FPFT-2216 strongly degraded CK1α and IKAROS family zinc finger 1/3 (IKZF1/3) via proteasomal degradation. FPFT-2216 exhibited stronger inhibitory effects on human lymphoma cell proliferation than known thalidomide derivatives and induced upregulation of p53 and its transcriptional targets, namely, p21 and MDM2. Combining FPFT-2216 with an MDM2 inhibitor exhibited synergistic antiproliferative activity and induced rapid tumor regression in immunodeficient mice subcutaneously transplanted with a human lymphoma cell line. Nearly all tumors in mice disappeared after 10 days; this was continuously observed in 5 of 7 mice up to 24 days after the final FPFT-2216 administration. FPFT-2216 also enhanced the antitumor activity of rituximab and showed antitumor activity in a patient-derived diffuse large B-cell lymphoma xenograft model. Furthermore, FPFT-2216 decreased the activity of the CARD11/BCL10/MALT1 (CBM) complex and inhibited IκBα and NFκB phosphorylation. These effects were mediated through CK1α degradation and were stronger than those of known IKZF1/3 degraders. In conclusion, FPFT-2216 inhibits tumor growth by activating the p53 signaling pathway and inhibiting the CBM complex/NFκB pathway via CK1α degradation. Therefore, FPFT-2216 may represent an effective therapeutic agent for hematopoietic malignancies, such as lymphoma. SIGNIFICANCE: We found potential vulnerability to CK1α degradation in certain lymphoma cells refractory to IKZF1/3 degraders. Targeting CK1α with FPFT-2216 could inhibit the growth of these cells by activating p53 signaling. Our study demonstrates the potential therapeutic application of CK1α degraders, such as FPFT-2216, for treating lymphoma.


Asunto(s)
Neoplasias Hematológicas , Linfoma de Células B Grandes Difuso , Piperidonas , Triazoles , Humanos , Animales , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Transducción de Señal , Caseína Quinasas/metabolismo , Factor de Transcripción Ikaros/metabolismo
2.
Pain ; 157(8): 1655-1665, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27023424

RESUMEN

T-type Ca channels (T channels), particularly Cav3.2 among the 3 isoforms, play a role in neuropathic and visceral pain. We thus characterized the effects of RQ-00311651 (RQ), a novel T-channel blocker, in HEK293 cells transfected with human Cav3.1 or Cav3.2 by electrophysiological and fluorescent Ca signaling assays, and also evaluated the antiallodynic/antihyperalgesic activity of RQ in somatic, visceral, and neuropathic pain models in rodents. RQ-00311651 strongly suppressed T currents when tested at holding potentials of -65 ∼ -60 mV, but not -80 mV, in the Cav3.1- or Cav3.2-expressing cells. RQ-00311651 also inhibited high K-induced Ca signaling in those cells. In mice, RQ, administered intraperitoneally (i.p.) at 5 to 20 mg/kg or orally at 20 to 40 mg/kg, significantly suppressed the somatic hyperalgesia and visceral pain-like nociceptive behavior/referred hyperalgesia caused by intraplantar and intracolonic administration of NaHS or Na2S, H2S donors, respectively, which involve the enhanced activity of Cav3.2 channels. RQ-00311651, given i.p. at 5 to 20 mg/kg, exhibited antiallodynic or antihyperalgesic activity in rats with spinal nerve injury-induced neuropathy or in rats and mice with paclitaxel-induced neuropathy. Oral and i.p. RQ at 10 to 20 mg/kg also suppressed the visceral nociceptive behavior and/or referred hyperalgesia accompanying cerulein-induced acute pancreatitis and cyclophosphamide-induced cystitis in mice. The analgesic and antihyperalgesic/antiallodynic doses of oral and i.p. RQ did not significantly affect the locomotor activity and motor coordination. Together, RQ is considered a state-dependent blocker of Cav3.1/Cav3.2 T channels and may serve as an orally available analgesic for treatment of neuropathic and inflammatory pain including distinct visceral pain with minimum central side effects.


Asunto(s)
Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo T/metabolismo , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Nocicepción/efectos de los fármacos , Dolor Visceral/tratamiento farmacológico , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Hiperalgesia/inducido químicamente , Masculino , Ratones , Neuralgia/inducido químicamente , Paclitaxel , Ratas , Ratas Wistar , Dolor Visceral/inducido químicamente
3.
Biochem Biophys Res Commun ; 445(1): 225-9, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24508802

RESUMEN

Hydrogen sulfide (H2S), a gasotransmitter, is formed from l-cysteine by multiple enzymes including cystathionine-γ-lyase (CSE). We have shown that an H2S donor, NaHS, causes hyperalgesia in rodents, an effect inhibited by knockdown of Cav3.2 T-type Ca(2+) channels (T-channels), and that NaHS facilitates T-channel-dependent currents (T-currents) in NG108-15 cells that naturally express Cav3.2. In the present study, we asked if endogenous and exogenous H2S participates in regulation of the channel functions in Cav3.2-transfected HEK293 (Cav3.2-HEK293) cells. dl-Propargylglycine (PPG), a CSE inhibitor, significantly decreased T-currents in Cav3.2-HEK293 cells, but not in NG108-15 cells. NaHS at 1.5mM did not affect T-currents in Cav3.2-HEK293 cells, but enhanced T-currents in NG108-15 cells. In the presence of PPG, NaHS at 1.5mM, but not 0.1-0.3mM, increased T-currents in Cav3.2-HEK293 cells. Similarly, Na2S, another H2S donor, at 0.1-0.3mM significantly increased T-currents in the presence, but not absence, of PPG in Cav3.2-HEK293 cells. Expression of CSE was detected at protein and mRNA levels in HEK293 cells. Intraplantar administration of Na2S, like NaHS, caused mechanical hyperalgesia, an effect blocked by NNC 55-0396, a T-channel inhibitor. The in vivo potency of Na2S was higher than NaHS. These results suggest that the function of Cav3.2 T-channels is tonically enhanced by endogenous H2S synthesized by CSE in Cav3.2-HEK293 cells, and that exogenous H2S is capable of enhancing Cav3.2 function when endogenous H2S production by CSE is inhibited. In addition, Na2S is considered a more potent H2S donor than NaHS in vitro as well as in vivo.


Asunto(s)
Canales de Calcio Tipo T/fisiología , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Alquinos/farmacología , Animales , Western Blotting , Calcio/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Línea Celular Tumoral , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Relación Dosis-Respuesta a Droga , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glicina/análogos & derivados , Glicina/farmacología , Células HEK293 , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfuros/síntesis química , Sulfuros/metabolismo , Sulfuros/farmacología
4.
Br J Pharmacol ; 168(3): 734-45, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22924591

RESUMEN

BACKGROUND AND PURPOSE: The Ca(v) 3.2 isoform of T-type Ca(2+) channels (T channels) is sensitized by hydrogen sulfide, a pro-nociceptive gasotransmitter, and also by PKA that mediates PGE(2) -induced hyperalgesia. Here we examined and analysed Ca(v) 3.2 sensitization via the PGE(2) /cAMP pathway in NG108-15 cells that express Ca(v) 3.2 and produce cAMP in response to PGE(2) , and its impact on mechanical nociceptive processing in rats. EXPERIMENTAL APPROACH: In NG108-15 cells and rat dorsal root ganglion (DRG) neurons, T-channel-dependent currents (T currents) were measured with the whole-cell patch-clamp technique. The molecular interaction of Ca(v) 3.2 with A-kinase anchoring protein 150 (AKAP150) and its phosphorylation were analysed by immunoprecipitation/immunoblotting in NG108-15 cells. Mechanical nociceptive threshold was determined by the paw pressure test in rats. KEY RESULTS: In NG108-15 cells and/or rat DRG neurons, dibutyryl cAMP (db-cAMP) or PGE(2) increased T currents, an effect blocked by AKAP St-Ht31 inhibitor peptide (AKAPI) or KT5720, a PKA inhibitor. The effect of PGE(2) was abolished by RQ-00015986-00, an EP(4) receptor antagonist. AKAP150 was co-immunoprecipitated with Ca(v) 3.2, regardless of stimulation with db-cAMP, and Ca(v) 3.2 was phosphorylated by db-cAMP or PGE(2) . In rats, intraplantar (i.pl.) administration of db-cAMP or PGE(2) caused mechanical hyperalgesia, an effect suppressed by AKAPI, two distinct T-channel blockers, NNC 55-0396 and ethosuximide, or ZnCl(2) , known to inhibit Ca(v) 3.2 among T channels. Oral administration of RQ-00015986-00 suppressed the PGE(2) -induced mechanical hyperalgesia. CONCLUSION AND IMPLICATIONS: Our findings suggest that PGE(2) causes AKAP-dependent phosphorylation and sensitization of Ca(v) 3.2 through the EP(4) receptor/cAMP/PKA pathway, leading to mechanical hyperalgesia in rats.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Canales de Calcio Tipo T/fisiología , AMP Cíclico/fisiología , Dinoprostona/fisiología , Subtipo EP4 de Receptores de Prostaglandina E/fisiología , Animales , Línea Celular Tumoral , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Ganglios Espinales/citología , Hiperalgesia/inducido químicamente , Hiperalgesia/fisiopatología , Masculino , Ratones , Neuronas , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA