Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Tissue Res ; 393(1): 47-62, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37227506

RESUMEN

The seahorse is one of the most unique teleost fishes in its morphology. The body is surrounded by bony plates and spines, and the male fish possess a brooding organ, called the brood pouch, on their tail. The surfaces of the brood pouch and the spines are surrounded by characteristic so-called flame cone cells. Based on our histological observations, flame cone cells are present in the seahorse Hippocampus abdominalis, but not in the barbed pipefish Urocampus nanus or the seaweed pipefish Syngnathus schlegeli, both of which belong to the same family as the seahorse. In the flame cone cells, we observed expression of an "orphan gene" lacking homologs in other lineages. This gene, which we named the proline-glycine rich (pgrich) gene, codes for an amino acid sequence composed of repetitive units. In situ hybridization and immunohistochemical analyses detected pgrich-positive signals from the flame cone cells. Based on a survey of the genome sequences of 15 teleost species, the pgrich gene is only found from some species of Syngnathiformes (namely, the genera Syngnathus and Hippocampus). The amino acid sequence of the seahorse PGrich is somewhat similar to the sequence deduced from the antisense strand of elastin. Furthermore, there are many transposable elements around the pgrich gene. These results suggest that the pgrich gene may have originated from the elastin gene with the involvement of transposable elements and obtained its novel function in the flame cone cells during the evolution of the seahorse.


Asunto(s)
Smegmamorpha , Animales , Masculino , Smegmamorpha/genética , Smegmamorpha/anatomía & histología , Elastina , Elementos Transponibles de ADN , Peces/genética , Epitelio
2.
Front Physiol ; 13: 914277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711299

RESUMEN

In teleost fishes, ionocytes in the gills are important osmoregulatory sites in maintaining ionic balance. During the embryonic stages before the formation of the gills, ionocytes are located in the yolk-sac membrane and body skin. In Mozambique tilapia embryos, quintuple-color immunofluorescence staining allowed us to classify ionocytes into four types: type I, showing only basolateral Na+/K+-ATPase (NKA) staining; type II, basolateral NKA and apical Na+, Cl- cotransporter 2; type III, basolateral NKA, basolateral Na+, K+, 2Cl- cotransporter 1a (NKCC1a) and apical Na+/H+ exchanger 3; and type IV, basolateral NKA, basolateral NKCC1a and apical cystic fibrosis transmembrane conductance regulator Cl- channel. The ionocyte population consisted mostly of type I, type II and type III in freshwater, while type I and IV dominated in seawater. In adult tilapia, dual observations of whole-mount immunocytochemistry and scanning electron microscopy showed morphofunctional alterations in ionocytes. After transfer from freshwater to seawater, while type-II ionocytes closed their apical openings to suspend ion absorption, type-III ionocytes with a concave surface were transformed into type IV with a pit via a transitory surface. The proposed model of functional classification of ionocytes can account not only for ion uptake in freshwater and ion secretion in seawater, but also for plasticity in ion-transporting functions of ionocytes in tilapia.

3.
Sci Rep ; 12(1): 2450, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165334

RESUMEN

The neuroplastic mechanism of sex reversal in the fish brain remains unclear due to the difficulty in identifying the key neurons involved. Mozambique tilapia show different reproductive behaviours between sexes; males build circular breeding nests while females hold and brood fertilized eggs in their mouth. In tilapia, gonadotropin-releasing hormone 3 (GnRH3) neurons, located in the terminal nerve, regulate male reproductive behaviour. Mature males have more GnRH3 neurons than mature females, and these neurons have been indicated to play a key role in the androgen-induced female-to-male sex reversal of the brain. We aimed to elucidate the signalling pathway involved in the androgen-induced increase in GnRH3 neurons in mature female tilapia. Applying inhibitors to organotypic cultures of brain slices, we showed that the insulin-like growth factor (IGF)-1 receptor (IGF-1R)/PI3K/AKT/mTOR pathway contributed to the androgen-induced increase in GnRH3 neurons. The involvement of IGF-1 and IGF-1R in 11-ketotestosterone (11-KT)-induced development of GnRH3 neurons was supported by an increase in Igf-1 mRNA shortly after 11-KT treatment, the increase of GnRH3 neurons after IGF-1 treatment and the expression of IGF-1R in GnRH3 neurons. Our findings highlight the involvement of IGF-1 and its downstream signalling pathway in the sex reversal of the tilapia brain.


Asunto(s)
Encéfalo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Metiltestosterona/farmacología , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Receptor IGF Tipo 1/metabolismo , Reproducción/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Encéfalo/efectos de los fármacos , Femenino , Factor I del Crecimiento Similar a la Insulina/farmacología , Masculino , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Testosterona/análogos & derivados , Testosterona/farmacología , Tilapia
4.
Fish Shellfish Immunol ; 117: 24-35, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34274420

RESUMEN

In molluscs, migration of hemocytes and epithelial cells is believed to play central roles in wound healing. Here, we assessed cellular and molecular mechanisms of wound healing in Pacific abalone, a marine gastropod. Light and electron microscopy in the wounds showed early accumulation of putative hemocytes, collagen deposition by fibroblasts, and further coverage of this tissue by migration of adjacent epithelial cells. Cell labelling technique allowed us to track hemocytes, which migrated to wound surface within 24 h. The migrated cells first expressed PCNA and SoxF weakly, and then the epithelial cells expressed abundant PCNA and SoxB1, SoxB2, and SoxC. These findings imply that abalone SoxF is involved in hemocyte migration or their differentiation into fibroblasts, and suggest that the migrated epithelia acquire stem cell-like property and undergo active proliferation. This study is the first to show direct evidence of hemocyte migration to wounds and expression of Sox genes in molluscan wound healing.


Asunto(s)
Gastrópodos/genética , Gastrópodos/inmunología , Hemocitos/inmunología , Factores de Transcripción SOX/genética , Cicatrización de Heridas/genética , Animales , Movimiento Celular , Expresión Génica , Antígeno Nuclear de Célula en Proliferación/genética
5.
Gene ; 767: 145285, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33144271

RESUMEN

The genus Takifugu is a group of approximately 20 species of puffer fishes living in a wide range of salinity environments around East Asian countries. This group presents a broad spectrum of evolutionary stages adapted to anadromy as a result of speciation that occurred a short time (2-5 million years) ago on an evolutionary timescale. This group thus can be considered as a model for studying the evolutionary mechanisms of anadromy. We firstly conducted a transfer experiment from seawater to low-salinity waters on five Takifugu species: two anadromous species T. obscurus and T. ocellatus, two euryhaline wanderer marine species T. rubripes and T. niphobles, and a strictly marine species T. snyderi, and confirmed that the capacity for acclimation to hypotonic environments was associated with their life history strategies. Next, transcriptomes of the gill and intestine of these species in hypotonic condition were compared to those under hypertonic condition for each species using RNA-Sequencing so as to determine possible candidate transporters playing an important role on freshwater adaptation. As this analysis suggested that cftr, encoding an important ion transporter for seawater acclimation in the gill, and ncc, encoding a transporter that is suggested to play important osmoregulatory roles in the intestine, are important candidates, their expression was validated by quantitative real-time PCR analysis. Expression of cftr was downregulated in the gills of the four euryhaline species under the hypotonic condition, but no change was detected in the gill of stenohaline T. snyderi, which may be one reason for the poor hypotonic acclimation capacity of T. snyderi. Expression of ncc was clearly upregulated in the intestines of the two anadromous species under the hypotonic condition, but not in other three species. Different ion transporter expression patterns between the five species indicate that the transcriptional regulation of cftr in the gill and ncc in the intestine may be important for the improvement of hypotonic acclimation capacity and evolution of anadromy in the Takifugu species.


Asunto(s)
Transporte Iónico/genética , Takifugu/genética , Takifugu/metabolismo , Aclimatación/genética , Adaptación Fisiológica/genética , Animales , Agua Dulce , Regulación de la Expresión Génica/genética , Branquias/metabolismo , Transporte Iónico/fisiología , Concentración Osmolar , Salinidad , Agua de Mar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transcriptoma/genética , Equilibrio Hidroelectrolítico/genética
6.
J Exp Zool B Mol Dev Evol ; 332(3-4): 81-91, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30964605

RESUMEN

Most teleostean embryos develop and hatch without parental assistance, though some receive parental care. We focused on a paternal brood-care species, the barred-chin blenny (Rhabdoblennius nitidus [Günther, 1861]). As hatching approached, fanning behavior by the male parent drastically increased and then embryos hatch. In the absence of the male parent, most embryos failed to hatch. However, the hatching rate was greatly assisted by introducing an artificial water current, suggesting that paternal assistance other than for aeration is required for successful embryo hatching. Next, we analyzed genes for the hatching enzyme and egg-envelope protein, which were successfully cloned from barred-chin blenny, and found the expression patterns differed from those of other euteleosts. Generally, high choriolytic enzyme swells the intact egg envelope, and then low choriolytic enzyme solubilizes the swollen envelope. The expression levels of both the enzymes, but especially the latter, were much lower in barred-chin blenny that is known in most other oviparous species. In addition, the main component of the egg envelope was changed into ChgHm and choriogenin L (ChgL) in barred-chin blenny, whereas ChgH and ChgL for other euteleosts. These in barred-chin blenny would result in ineffective egg-envelope digestion because the posthatching egg envelopes were observed to be swollen but not solubilized. Male parental assistance by fanning until hatching may compensate for this insufficiency. Our study illustrates an example of the evolution of parent-embryo interaction built on a novel relationship: Degradation of the hatching enzyme/egg-envelope digestion system, accompanied by male parental hatching assistance.


Asunto(s)
Conducta Animal , Peces/fisiología , Responsabilidad Parental , Animales , Clonación Molecular , ADN Complementario/genética , Embrión no Mamífero , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces/genética , Regulación de la Expresión Génica/fisiología , Masculino , Factores de Tiempo
7.
Sci Rep ; 8(1): 16855, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442908

RESUMEN

The neuroplastic mechanisms in the fish brain that underlie sex reversal remain unknown. Gonadotropin-releasing hormone 3 (GnRH3) neurons control male reproductive behaviours in Mozambique tilapia and show sexual dimorphism, with males having a greater number of GnRH3 neurons. Treatment with androgens such as 11-ketotestosterone (KT), but not 17ß-estradiol, increases the number of GnRH3 neurons in mature females to a level similar to that observed in mature males. Compared with oestrogen, the effect of androgen on neurogenesis remains less clear. The present study examined the effects of 11-KT, a non-aromatizable androgen, on cellular proliferation, neurogenesis, generation of GnRH3 neurons and expression of cell cycle-related genes in mature females. The number of proliferating cell nuclear antigen-positive cells was increased by 11-KT. Simultaneous injection of bromodeoxyuridine and 11-KT significantly increased the number of newly-generated (newly-proliferated) neurons, but did not affect radial glial cells, and also resulted in newly-generated GnRH3 neurons. Transcriptome analysis showed that 11-KT modulates the expression of genes related to the cell cycle process. These findings suggest that tilapia could serve as a good animal model to elucidate the effects of androgen on adult neurogenesis and the mechanisms for sex reversal in the fish brain.


Asunto(s)
Andrógenos/farmacología , Encéfalo/citología , Encéfalo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Tilapia/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proliferación Celular/efectos de los fármacos , Ventrículos Cerebrales/citología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Procesamiento de Imagen Asistido por Computador , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Testosterona/análogos & derivados , Testosterona/farmacología
8.
Nat Commun ; 9(1): 3402, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143642

RESUMEN

Mammalian gut microbiota are integral to host health. However, how this association began remains unclear. We show that in basal chordates the gut space is radially compartmentalized into a luminal part where food microbes pass and an almost axenic peripheral part, defined by membranous delamination of the gut epithelium. While this membrane, framed with chitin nanofibers, structurally resembles invertebrate peritrophic membranes, proteome supports its affinity to mammalian mucus layers, where gut microbiota colonize. In ray-finned fish, intestines harbor indigenous microbes, but chitinous membranes segregate these luminal microbes from the surrounding mucus layer. These data suggest that chitin-based barrier immunity is an ancient system, the loss of which, at least in mammals, provided mucus layers as a novel niche for microbial colonization. These findings provide a missing link for intestinal immune systems in animals, revealing disparate mucosal environment in model organisms and highlighting the loss of a proven system as innovation.


Asunto(s)
Quitina/inmunología , Microbioma Gastrointestinal/fisiología , Moco/microbiología , Animales , Cordados/inmunología , Cordados/microbiología , Ciona/inmunología , Ciona/microbiología , Peces/inmunología , Peces/microbiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nanofibras
9.
Front Physiol ; 9: 212, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593569

RESUMEN

The mRNA expressions of the epithelial neutral amino acid transporters slc6a18 and slc6a19a in the five segments (HL, PMC, GL, DMC, and TS) of the intestine of Mozambique tilapia, and their responses to fasting and refeeding were investigated for a better understanding of the functional and nutritional characteristics of slc6a18 and slc6a19a. Although both slc6a18 and slc6a19a were expressed mainly in the intestine, these genes showed opposing spatial distributions along the intestine. The slc6a18 was mainly expressed in the middle (GL) and posterior (DMC and TS) intestines, while slc6a19a was specifically expressed in the anterior intestine (HL and PMC). Large decreases of amino acid concentrations from the HL to GL imply that amino acids are mainly absorbed before reaching the GL, suggesting an important role of slc6a19a in the absorption. Moreover, substantial amounts of some neutral amino acids with the isoelectric point close to 6 remain in the GL. These are most likely the remaining unabsorbed amino acids or those from of amino acid antiporters which release neutral amino acids in exchange for uptake of its substrates. These amino acids were diminished in the TS, suggesting active absorption in the posterior intestine. This suggests that slc6a18 is essential to complete the absorption of neutral amino acids. At fasting, significant downregulation of slc6a19a expression was observed from the initial up to day 2 and became stable from day 4 to day 14 in the HL and PMC suggesting that slc6a19a expression reflects nutritional condition in the intestinal lumen. Refeeding stimulates slc6a19a expression, although expressions did not exceed the initial level within 3 days after refeeding. The slc6a18 expression was decreased during fasting in the GL but no significant change was observed in the DMC. Only a transient decrease was observed at day 2 in the TS. Refeeding did not stimulate slc6a18 expression. Results in this study suggest that Slc6a18 and Slc6a19 have different roles in the intestine, and that both of these contribute to establish the efficient neutral amino acid absorption system in the tilapia.

10.
J Exp Biol ; 220(Pt 24): 4720-4732, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29084852

RESUMEN

Spatiotemporal changes in branchial ionocyte distribution were investigated following transfer from seawater (SW) to freshwater (FW) in Japanese seabass. The mRNA expression levels of cystic fibrosis transmembrane conductance regulator (CFTR) and Na+/K+/2Cl- cotransporter 1a (NKCC1a) in the gills rapidly decreased after transfer to FW, whereas Na+/H+ exchanger 3 (NHE3) and Na+/Cl- cotransporter 2 (NCC2) expression were upregulated following the transfer. Using quadruple-color whole-mount immunofluorescence staining with anti-Na+/K+-ATPase, anti-NHE3, anti-CFTR and T4 (anti-NKCC1a/NCC2) antibodies, we classified ionocytes into one SW type and two FW types: NHE3 cell and NCC2 cell. Time course observation after transfer revealed an intermediate type between SW-type and FW-type NHE3 ionocytes, suggesting functional plasticity of ionocytes. Finally, on the basis of the ionocyte classification of Japanese seabass, we observed the location of ionocyte subtypes on frozen sections of the gill filaments stained by triple-color immunofluorescence staining. Our observation indicated that SW-type ionocytes transformed into FW-type NHE3 ionocytes and at the same time shifted their distribution from filaments to lamellae. However, FW-specific NCC2 ionocytes appeared mainly in the filaments. Taken together, these findings indicate that ionocytes originated from undifferentiated cells in the filaments and expanded their distribution to the lamellae during FW acclimation.


Asunto(s)
Lubina/fisiología , Osmorregulación , Animales , Lubina/genética , Lubina/metabolismo , Proliferación Celular , Clonación Molecular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Técnica del Anticuerpo Fluorescente , Agua Dulce , Branquias/química , Branquias/citología , Branquias/metabolismo , Concentración Osmolar , Plasma/química , ARN Mensajero , Agua de Mar , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo
11.
J Exp Zool B Mol Dev Evol ; 328(3): 240-258, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28229554

RESUMEN

Teleost egg envelope generally consists of a thin outer layer and a thick inner layer. The inner layer of the Pacific herring egg envelope is further divided into distinct inner layers I and II. In our previous study, we cloned four zona pellucida (ZP) proteins (HgZPBa, HgZPBb, HgZPCa, and HgZPCb) from Pacific herring, two of which (HgZPBa and HgZPCa) were synthesized in the liver and two (HgZPBb and HgZPCb) in the ovary. In this study, we raised antibodies against these four proteins to identify their locations using immunohistochemistry. Our results suggest that inner layer I is constructed primarily of HgZPBa and Ca, whereas inner layer II consists primarily of HgZPBa. HgZPBb and Cb were minor components of the envelope. Therefore, the egg envelope of Pacific herring is primarily composed of liver-synthesized ZP proteins. A comparison of the thickness of the fertilized egg envelopes of 55 species suggested that egg envelopes derived from liver-synthesized ZP proteins tended to be thicker in demersal eggs than those in pelagic eggs, whereas egg envelopes derived from ovarian-synthesized ZP proteins had no such tendency. Our comparison suggests that the prehatching period of an egg with a thick egg envelope is longer than that of an egg with a thin egg envelope. We hypothesized that acquisition of liver-synthesized ZP proteins during evolution conferred the ability to develop a thick egg envelope, which allowed species with demersal eggs to adapt to mechanical stress in the prehatching environment by thickening the egg envelope, while pelagic egg envelopes have remained thin.


Asunto(s)
Evolución Biológica , Óvulo/metabolismo , Glicoproteínas de la Zona Pelúcida/biosíntesis , Zona Pelúcida/metabolismo , Secuencia de Aminoácidos/genética , Animales , Clonación Molecular , Proteínas del Huevo/biosíntesis , Proteínas del Huevo/genética , Femenino , Peces/genética , Peces/crecimiento & desarrollo , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Óvulo/crecimiento & desarrollo , Glicoproteínas de la Zona Pelúcida/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-27693627

RESUMEN

The tissue distribution of slc15a1a, a gene that encodes an oligopeptide transporter, PepT1, and its response to fasting and refeeding were investigated in the intestinal epithelium of Mozambique tilapia for a better understanding of its role on nutrient absorption. The slc15a1a was predominantly expressed in the absorptive epithelia of the anterior part of the intestine, suggesting that digested oligopeptides are primarily absorbed in the anterior intestine. The response of slc15a1a to fasting was evaluated at 1, 2, 4, 7 and 14days after the last feeding. Fasting revealed a biphasic effect, where short-term fasting significantly upregulated slc15a1a expression and long-term fasting resulted in downregulation. The expression level continued to decrease and fell below the pre-fasted level from day 4 to 14. Proximal (the hepatic loop, HL) and distal parts (the proximal major coil, PMC) of the anterior intestine showed different magnitudes of responses to fasting; slc15a1a expression in the PMC showed greater upregulation and downregulation than that in the HL. Refeeding significantly stimulated slc15a1a expression at day 3, although the expression did not exceed the pre-fasted level. Observed responses of slc15a1a to fasting and refeeding suggest that the expression level of this gene can serve as a sensitive indicator of the changes that may occur in altering nutritional conditions. These findings contribute to a better understanding of the role of PepT1 in nutrition and of the complex mechanisms underlying the absorption of oligopeptides and amino acids in the intestine, and may lead to development of possible means to manipulate the absorption processes for the improvement of growth and other metabolic and physiological conditions in fish.


Asunto(s)
Ingestión de Alimentos , Ayuno/metabolismo , Proteínas de Peces/genética , Regulación de la Expresión Génica , Mucosa Intestinal/metabolismo , Simportadores/genética , Tilapia/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Transportador de Péptidos 1 , Transporte de Proteínas , Simportadores/química , Simportadores/metabolismo , Tilapia/metabolismo , Tilapia/fisiología
13.
J Endocrinol ; 230(3): 325-37, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27402066

RESUMEN

Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression.


Asunto(s)
Acuaporina 3/metabolismo , Proteínas de Peces/metabolismo , Branquias/metabolismo , Hidrocortisona/farmacología , Prolactina/farmacología , Tilapia/metabolismo , Animales , Animales Modificados Genéticamente , Acuaporina 3/genética , Proteínas de Peces/genética , Agua Dulce , Branquias/efectos de los fármacos , ARN Mensajero/genética , Agua de Mar , Ovinos , Tilapia/genética , Equilibrio Hidroelectrolítico/efectos de los fármacos
14.
Zoological Lett ; 2: 12, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27307998

RESUMEN

BACKGROUND: During the course of evolution, fishes have acquired adaptability to various salinity environments, and acquirement of seawater (SW) adaptability has played important roles in fish evolution and diversity. However, little is known about how saline environments influence the acquirement of SW adaptability. The Japanese medaka Oryzias latipes is a euryhaline species that usually inhabits freshwater (FW), but is also adaptable to full-strength SW when transferred through diluted SW. In the present study, we examined how past SW experience affects hyposmoregulatory ability in Japanese medaka. RESULTS: For the preparation of SW-experienced fish, FW medaka were acclimated to SW after pre-acclimation to 1/2 SW, and the SW-acclimated fish were transferred back to FW. The SW-experienced fish and control FW fish (SW-inexperienced fish) were transferred directly to SW. Whereas control FW fish did not survive direct transfer to SW, 1/4 of SW-experienced fish adapted successfully to SW. Although there were no significant differences in blood osmolality and plasma Na(+) and Cl(-) concentrations between SW-experienced and control FW medaka in FW, increments in these parameters following SW transfer were lower in SW-experienced fish than in control FW fish. The gene expression of SW-type Na(+), K(+)-ATPase (NKA) in the gills of SW-experienced medaka increased more quickly after direct SW transfer compared with the expression in control FW fish. Prior to SW transfer, the density of NKA-immunoreactive ionocytes in the gills was higher in SW-experienced fish than in control FW fish. Ionocytes expressing CFTR Cl(-) channel at the apical membrane and those forming multicellular complexes, both of which were characteristic of SW-type ionocytes, were also increased in SW-experienced fish. CONCLUSION: These results indicate that past SW experience enhances the capacity of Na(+) and Cl(-) secretion in ionocytes and thus hypoosmoregulatory ability of Japanese medaka, suggesting the presence of epigenetic mechanisms involved in seawater adaptation.

15.
Gen Comp Endocrinol ; 232: 151-9, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27118703

RESUMEN

Endocrine control of osmoregulation is essential for teleosts to adapt to various aquatic environments. Prolactin (PRL) is known as a fundamental endocrine factor for hyperosmoregulation in teleost fishes, acting on ionocytes in the gills to maintain ion concentrations of body fluid within narrow physiological ranges in freshwater conditions. Cortisol is also known as an osmoregulation-related steroid in teleosts; however, its precise function is still controversial. Here, we investigated more detailed effects of PRL and roles of cortisol on ionocytes of Mozambique tilapia (Oreochromis mossambicus) in freshwater, using an improved gill filament incubation system. This incubation system resulted in enhanced cell viability, as evaluated using the dead cell marker propidium iodide. PRL was shown to maintain the density of freshwater-type ionocytes in isolated gill filaments; this effect of PRL is not achieved by the activation of cell proliferation, but by the maintenance of existing ionocytes. Cortisol alone did not show any distinct effect on ionocyte density in isolated gill filaments. We also assessed effects of PRL and cortisol on relative mRNA levels of NCC2, NHE3, NKAa1a, and NKAa1b. PRL maintained relative NCC2 and NKAa1a mRNA abundance, and cortisol showed a stimulatory effect on relative NCC2 and NKAa1a mRNA levels in combination with PRL, though cortisol alone exerted no effect on these genes. An increase in NKAa1b mRNA abundance was detected in cortisol-treated groups. PRL treatment also maintained normal NCC2 localization at the apical membrane of the ionocytes. These results indicate that PRL maintains freshwater-type ionocytes, and that cortisol stimulates the function of ionocytes maintained by PRL.


Asunto(s)
Branquias/metabolismo , Prolactina/metabolismo , Tilapia/crecimiento & desarrollo , Animales , Hidrocortisona/metabolismo , Osmorregulación , ARN Mensajero/genética , Tilapia/metabolismo , Equilibrio Hidroelectrolítico/efectos de los fármacos
16.
J Exp Zool B Mol Dev Evol ; 326(2): 125-35, 2016 03.
Artículo en Inglés | MEDLINE | ID: mdl-26987447

RESUMEN

Syngnathiform fishes carry their eggs in a brood structure found in males. The brood structure differs from species to species: seahorses carry eggs within enclosed brood pouch, messmate pipefish carry eggs in the semi-brood pouch, and alligator pipefish carry eggs in the egg compartment on abdomen. These egg protection strategies were established during syngnathiform evolution. In the present study, we compared the hatching mode of protected embryos of three species. Electron microscopic observations revealed that alligator pipefish and messmate pipefish egg envelopes were thicker than those of seahorses, suggesting that the seahorse produces a weaker envelope. Furthermore, molecular genetic analysis revealed that these two pipefishes possessed the egg envelope-digesting enzymes, high choriolytic enzyme (HCE), and low choriolytic enzyme (LCE), as do many euteleosts. In seahorses, however, only HCE gene expression was detected. When searching the entire seahorse genome by high-throughput DNA sequencing, we did not find a functional LCE gene and only a trace of the LCE gene exon was found, confirming that the seahorse LCE gene was pseudogenized during evolution. Finally, we estimated the size and number of hatching gland cells expressing hatching enzyme genes by whole-mount in situ hybridization. The seahorse cells were the smallest of the three species, while they had the greatest number. These results suggest that the isolation of eggs from the external environment by paternal bearing might bring the egg envelope thin, and then, the hatching enzyme genes became pseudogenized. J. Exp. Zool. (Mol. Dev. Evol.) 9999B:XX-XX, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Evolución Biológica , Smegmamorpha/embriología , Smegmamorpha/genética , Animales , Clonación Molecular , ADN Complementario , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Óvulo
17.
Am J Physiol Regul Integr Comp Physiol ; 309(10): R1251-63, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26377558

RESUMEN

This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.


Asunto(s)
Transporte Iónico/fisiología , Concentración Osmolar , Prolactina/farmacología , Simportadores del Cloruro de Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tilapia/fisiología , Animales , Matriz Extracelular , Regulación de la Expresión Génica/fisiología , Branquias , Masculino , Receptores de Prolactina/genética , Receptores de Prolactina/metabolismo , Simportadores del Cloruro de Sodio/genética , Regulación hacia Arriba
18.
Cell Tissue Res ; 362(3): 677-88, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26183720

RESUMEN

In marine cartilaginous fish, reabsorption of filtered urea by the kidney is essential for retaining a large amount of urea in their body. However, the mechanism for urea reabsorption is poorly understood due to the complexity of the kidney. To address this problem, we focused on elephant fish (Callorhinchus milii) for which a genome database is available, and conducted molecular mapping of membrane transporters along the different segments of the nephron. Basically, the nephron architecture of elephant fish was similar to that described for elasmobranch nephrons, but some unique features were observed. The late distal tubule (LDT), which corresponded to the fourth loop of the nephron, ran straight near the renal corpuscle, while it was convoluted around the tip of the loop. The ascending and descending limbs of the straight portion were closely apposed to each other and were arranged in a countercurrent fashion. The convoluted portion of LDT was tightly packed and enveloped by the larger convolution of the second loop that originated from the same renal corpuscle. In situ hybridization analysis demonstrated that co-localization of Na(+),K(+),2Cl(-) cotransporter 2 and Na(+)/K(+)-ATPase α1 subunit was observed in the early distal tubule and the posterior part of LDT, indicating the existence of two separate diluting segments. The diluting segments most likely facilitate NaCl absorption and thereby water reabsorption to elevate urea concentration in the filtrate, and subsequently contribute to efficient urea reabsorption in the final segment of the nephron, the collecting tubule, where urea transporter-1 was intensely localized.


Asunto(s)
Pez Eléctrico/anatomía & histología , Pez Eléctrico/metabolismo , Túbulos Renales Colectores/anatomía & histología , Túbulos Renales Colectores/metabolismo , Animales , Clonación Molecular , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inmunohistoquímica , Hibridación in Situ , Modelos Biológicos , Filogenia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-26021981

RESUMEN

Recently, a teleost ortholog of renal outer medullary K(+) channel (ROMK) expressed in gill ionocytes (ROMKa) has emerged as a primary K(+)-excreting pathway in fish. However, the mechanisms by which ROMKa expression is regulated in response to perturbations of plasma K(+) levels are unknown. In this study, we aimed to identify potential links between the endocrine system and K(+) regulation in a euryhaline fish. We assessed time-course changes in multiple endocrine parameters, including plasma cortisol and gene expression of branchial glucocorticoid and mineralocorticoid receptors (GR1, GR2, and MR) and pituitary hormones, in seawater (SW)-acclimated Mozambique tilapia (Oreochromis mossambicus) exposed to high-K(+) (H-K) SW. Exposure to H-K SW elicited little effects on plasma cortisol or mRNA levels of GRs and pituitary hormones. Since plasma K(+) and branchial ROMKa expression was increased within 6h after H-K treatment in vivo, the effect of high K(+) was subsequently tested in a gill filament incubation experiment using media with differing K(+) concentrations. ROMKa mRNA levels were induced following incubation of filaments in H-K medium for 6h. The present study is the first to demonstrate that the expression of ROMKa in teleost ionocytes can respond to high K(+) conditions independent from systemic signaling.


Asunto(s)
Adaptación Fisiológica , Canales de Potasio/metabolismo , Potasio/metabolismo , Agua de Mar , Tilapia/fisiología , Animales , Hidrocortisona/sangre , Técnicas In Vitro , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética
20.
Am J Pathol ; 185(7): 1889-98, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25987249

RESUMEN

Type 2 diabetes mellitus is a leading health issue worldwide. Among cases of diabetes mellitus nephropathy (DN), the major complication of type 2 diabetes mellitus, the nephrotic phenotype is often intractable to clinical intervention and demonstrates the rapid decline of renal function to end-stage renal disease. We recently identified the gene for glypican-5 (GPC5), a cell-surface heparan sulfate proteoglycan, as conferring susceptibility for acquired nephrotic syndrome and additionally identified an association through a genome-wide association study between a variant in GPC5 and DN of type 2 diabetes mellitus. In vivo and in vitro data showed a progressive increase of GPC5 in type 2 DN along with severity; the excess was derived from glomerular mesangial cells. In this study, diabetic kidney showed that accumulation of fibroblast growth factor (Fgf)2 strikingly induced progressive proteinuria that was avoided in Gpc5 knockdown mice. The efficacy of Gpc5 inhibition was exerted through expression of the Fgf receptors 3 and 4 provoked in the diabetic kidney attributively. Extraglomerular Fgf2 was pathogenic in DN, and the deterrence of Gpc5 effectively inhibited the glomerular accumulation of Fgf2, the subsequent increase of mesangial extracellular matrix, and the podocytes' small GTPase activity. These findings elucidate the pivotal role of GPC5, identified as a susceptible gene in the genome-wide association study, in hyperglycemia-induced glomerulopathy.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/etiología , Glipicanos/metabolismo , Síndrome Nefrótico/etiología , Adulto , Anciano , Animales , Línea Celular , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Susceptibilidad a Enfermedades , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Mesangio Glomerular/patología , Glipicanos/genética , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/patología , Riñón/metabolismo , Riñón/patología , Fallo Renal Crónico/etiología , Fallo Renal Crónico/patología , Masculino , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Síndrome Nefrótico/patología , Podocitos/metabolismo , Proteinuria/etiología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...