Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Arch Toxicol ; 97(7): 1887-1897, 2023 07.
Article En | MEDLINE | ID: mdl-37193757

We previously found that methylmercury induces expression of oncostatin M (OSM), which is released extracellularly and binds to tumor necrosis factor receptor 3 (TNFR3), possibly enhancing its own toxicity. However, the mechanism by which methylmercury causes OSM to bind to TNFR3 rather than to its known receptors, OSM receptor and LIFR, is unknown. In this study, we aimed to elucidate the effect of methylmercury modification of cysteine residues in OSM on binding to TNFR3. Immunostaining of TNFR3-V5-expressing cells suggested that methylmercury promoted binding of OSM to TNFR3 on the cell membrane. In an in vitro binding assay, OSM directly bound to the extracellular domain of TNFR3, and this binding was promoted by methylmercury. Additionally, the formation of a disulfide bond in the OSM molecule was essential for the binding of both proteins, and LC/MS analysis revealed that methylmercury directly modified the 105th cysteine residue (Cys105) in OSM. Next, mutant OSM, in which Cys105 was replaced by serine or methionine, increased the binding to TNFR3, and a similar effect was observed in immunoprecipitation using cultured cells. Furthermore, cell proliferation was inhibited by treatment with Cys105 mutant OSMs compared with wildtype OSM, and this effect was cancelled by TNFR3 knockdown. In conclusion, we revealed a novel mechanism of methylmercury toxicity, in which methylmercury directly modifies Cys105 in OSM, thereby inhibiting cell proliferation via promoting binding to TNFR3. This indicates a chemical disruption in the interaction between the ligand and the receptor is a part of methylmercury toxicity.


Cysteine , Methylmercury Compounds , Oncostatin M/chemistry , Oncostatin M/metabolism , Methylmercury Compounds/toxicity , Receptors, Tumor Necrosis Factor , Cell Proliferation
2.
Physiol Rep ; 9(24): e15092, 2021 12.
Article En | MEDLINE | ID: mdl-34921520

Sodium-dependent glucose cotransporters (SGLTs) have attracted considerable attention as new targets for type 2 diabetes mellitus. In the kidney, SGLT2 is the major glucose uptake transporter in the proximal tubules, and inhibition of SGLT2 in the proximal tubules shows renoprotective effects. On the other hand, SGLT1 plays a role in glucose absorption from the gastrointestinal tract, and the relationship between SGLT1 inhibition in the gut and renal function remains unclear. Here, we examined the effect of SGL5213, a novel and potent intestinal SGLT1 inhibitor, in a renal failure (RF) model. SGL5213 improved renal function and reduced gut-derived uremic toxins (phenyl sulfate and trimethylamine-N-oxide) in an adenine-induced RF model. Histological analysis revealed that SGL5213 ameliorated renal fibrosis and inflammation. SGL5213 also reduced gut inflammation and fibrosis in the ileum, which is a primary target of SGL5213. Examination of the gut microbiota community revealed that the Firmicutes/Bacteroidetes ratio, which suggests gut dysbiosis, was increased in RF and SGL5213 rebalanced the ratio by increasing Bacteroidetes and reducing Firmicutes. At the genus level, Allobaculum (a major component of Erysipelotrichaceae) was significantly increased in the RF group, and this increase was canceled by SGL5213. We also measured the effect of SGL5213 on bacterial phenol-producing enzymes that catalyze tyrosine into phenol, following the reduction of phenyl sulfate, which is a novel marker and a therapeutic target for diabetic kidney disease DKD. We found that the enzyme inhibition was less potent, suggesting that the change in the microbial community and the reduction of uremic toxins may be related to the renoprotective effect of SGL5213. Because SGL5213 is a low-absorbable SGLT1 inhibitor, these data suggest that the gastrointestinal inhibition of SGLT1 is also a target for chronic kidney diseases.


Adenine/toxicity , Gastrointestinal Microbiome/drug effects , Renal Insufficiency/chemically induced , Renal Insufficiency/drug therapy , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sorbitol/analogs & derivatives , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Gastrointestinal Microbiome/physiology , Mice , Mice, Inbred C57BL , Renal Insufficiency/metabolism , Sorbitol/pharmacology , Sorbitol/therapeutic use
3.
Nephrol Dial Transplant ; 35(2): 250-264, 2020 02 01.
Article En | MEDLINE | ID: mdl-31411705

BACKGROUND: Cardiorenal syndrome is a major cause of mortality in patients with chronic kidney disease (CKD). However, the involvement of detrimental humoral mediators in the pathogenesis of cardiorenal syndrome is still controversial. Trimethylamine-N-oxide (TMAO), a hepatic metabolic product of trimethylamine generated from dietary phosphatidylcholine or carnitine derived by the gut microbiota, has been linked directly with progression of cardiovascular disease and renal dysfunction. Thus, targeting TMAO may be a novel strategy for the prevention of cardiovascular disease and chronic kidney disease. METHODS: Linaclotide, a guanylate cyclase C agonist, was administered to adenine-induced renal failure (RF) mice and changes in renal function and levels of gut-derived uremic toxins, as well as the gut microbiota community, were analyzed using metabolomic and metagenomic methods to reveal its cardiorenal effect. RESULTS: Linaclotide decreased the plasma levels of TMAO at a clinically used low dose of 10 µg/kg in the adenine-induced RF mouse model. At a high concentration of 100 µg/kg, linaclotide clearly improved renal function and reduced the levels of various uremic toxins. A reduction in TMAO levels following linaclotide treatment was also observed in a choline-fed pro-atherosclerotic model. Linaclotide ameliorated renal inflammation and fibrosis and cardiac fibrosis, as well as decreased the expression of collagen I, transforming growth factor-ß, galectin-3 (Gal-3) and ST2 genes. Plasma levels of Gal-3 and ST2 were also reduced. Because exposure of cardiomyocytes to TMAO increased fibronectin expression, these data suggest that linaclotide reduced the levels of TMAO and various uremic toxins and may result in not only renal, but also cardiac, fibrosis. F4/80-positive macrophages were abundant in small intestinal crypts in RF mice, and this increased expression was decreased by linaclotide. Reduced colonic claudin-1 levels were also restored by linaclotide, suggesting that linaclotide ameliorated the 'leaky gut' in RF mice. Metagenomic analysis revealed that the microbial order Clostridiales could be responsible for the change in TMAO levels. CONCLUSION: Linaclotide reduced TMAO and uremic toxin levels and could be a powerful tool for the prevention and control of the cardiorenal syndrome by modification of the gut-cardio-renal axis.


Adenine/toxicity , Cardio-Renal Syndrome/drug therapy , Gastrointestinal Microbiome/drug effects , Guanylate Cyclase/chemistry , Guanylyl Cyclase C Agonists/pharmacology , Peptides/pharmacology , Renal Insufficiency, Chronic/drug therapy , Animals , Cardio-Renal Syndrome/chemically induced , Cardio-Renal Syndrome/metabolism , Cardio-Renal Syndrome/pathology , Disease Models, Animal , Disease Progression , Fibrosis/chemically induced , Fibrosis/drug therapy , Fibrosis/metabolism , Fibrosis/pathology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology
4.
Sci Rep ; 9(1): 19075, 2019 12 13.
Article En | MEDLINE | ID: mdl-31836785

Carboxyl-containing metabolites, such as bile acids and fatty acids, have many important functions and microbiota is involved in the production of them. In the previous study, we found that the chronic kidney disease (CKD) model mice raised under germ-free conditions provided more severe renal damage than the mice with commensal microbiota. However, the precise influence by the microbiome and carboxyl-containing metabolites to the renal functions is unknown. In this study, we aimed to develop a novel chemical isotope labeling-LC-MS/MS method using the 2-picolylamine and its isotopologue and applied the analysis of effects of microbiome and CKD pathophysiology. The developed semi-quantitative method provided the high accuracy not inferior to the absolute quantification. By comparing of four groups of mice, we found that both microbiota and renal function can alter the composition and level of these metabolites in both plasma and intestine. In particular, the intestinal level of indole-3-acetic acid, short-chain fatty acids and n-3 type of polyunsaturated fatty acid, which play important roles in the endothelial barrier function, were significantly lower in germ-free conditions mice with renal failure. Accordingly, it is suggested these metabolites might have a renoprotective effect on CKD by suppressing epithelial barrier disruption.


Amines/chemistry , Gastrointestinal Microbiome , Isotope Labeling , Metabolome , Renal Insufficiency, Chronic/microbiology , Tandem Mass Spectrometry , Amines/chemical synthesis , Animals , Bile Acids and Salts/metabolism , Cecum/metabolism , Chromatography, Liquid , Feces/microbiology , Indicators and Reagents , Metabolic Networks and Pathways , Mice , Specific Pathogen-Free Organisms
5.
Nat Commun ; 10(1): 1835, 2019 04 23.
Article En | MEDLINE | ID: mdl-31015435

Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease.


Albuminuria/etiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/blood , Gastrointestinal Microbiome/physiology , Sulfuric Acid Esters/metabolism , Adult , Aged , Aged, 80 and over , Albuminuria/blood , Albuminuria/drug therapy , Albuminuria/pathology , Animals , Animals, Genetically Modified , Cohort Studies , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/urine , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Dogs , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Madin Darby Canine Kidney Cells , Male , Metabolomics/methods , Mice , Mice, Inbred C57BL , Middle Aged , Organic Anion Transporters/genetics , Podocytes/metabolism , Podocytes/pathology , Rats , Streptozocin/toxicity , Sulfuric Acid Esters/blood , Tyrosine Phenol-Lyase/antagonists & inhibitors , Tyrosine Phenol-Lyase/metabolism , Young Adult
6.
Biol Pharm Bull ; 41(8): 1170-1177, 2018.
Article En | MEDLINE | ID: mdl-30068866

Patients with chronic kidney disease (CKD) have increased blood levels of phenyl sulfate (PS), a circulating uremic toxin. In this study, we produced anti-PS monoclonal antibodies (mAbs) and characterized their cross-reactivity to structural PS analogs. To induce PS-specific mAbs, we synthesized 4-mercaptophenyl sulfate with a sulfhydryl group at the para-position of PS and conjugated it to carrier proteins via bifunctional linkers. Using these PS conjugates as immunogens and as antigens for enzyme-linked immunosorbent assay (ELISA) screening, we produced by a hybridoma method two novel mAbs (YK33.1 and YKS19.2) that react with PS conjugates independent of carrier and linker structures. Although all of the PS analogs tested, with the exception of indoxyl sulfate, were cross-reactive to both mAbs in phosphate buffered saline (PBS), PS specificity for YKS19.2 was enhanced in human plasma and serum. YKS19.2 mAb was cross-reactive only with o-cresyl sulfate, which is absent in human blood. PS sensitivity for YKS19.2 mAb increased to an IC50 of 10.4 µg/mL when 0.1% Tween 20 was added in a primary competitive reaction. To explore potential clinical applications, we determined concentrations of PS in serum samples from 19 CKD patients by inhibition ELISA using YKS19.2 mAb and compared them to those found using an LC-MS/MS method. A good correlation was observed between each value (R2=0.825). Therefore, the unique antigen specificity of YKS19.2 mAb could be useful for prescreening of patients with accumulated PS or for comprehensive analysis of uremic toxins that have a PS-like structure.


Antibodies, Monoclonal/immunology , Renal Insufficiency, Chronic/blood , Sulfuric Acid Esters/blood , Sulfuric Acid Esters/immunology , Animals , Antigens/chemistry , Antigens/immunology , Cell Line, Tumor , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay , Female , Hemocyanins/chemistry , Hemocyanins/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Mice, Inbred BALB C , Ovalbumin/chemistry , Ovalbumin/immunology , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/immunology , Sulfuric Acid Esters/chemistry , Tandem Mass Spectrometry
7.
J Biol Chem ; 293(26): 10186-10201, 2018 06 29.
Article En | MEDLINE | ID: mdl-29760187

Toll-like receptor 4 (TLR4) is an indispensable immune receptor for lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall. Following LPS stimulation, TLR4 transmits the signal from the cell surface and becomes internalized in an endosome. However, the spatial regulation of TLR4 signaling is not fully understood. Here, we investigated the mechanisms of LPS-induced TLR4 internalization and clarified the roles of the extracellular LPS-binding molecules, LPS-binding protein (LBP), and glycerophosphatidylinositol-anchored protein (CD14). LPS stimulation of CD14-expressing cells induced TLR4 internalization in the presence of serum, and an inhibitory anti-LBP mAb blocked its internalization. Addition of LBP to serum-free cultures restored LPS-induced TLR4 internalization to comparable levels of serum. The secretory form of the CD14 (sCD14) induced internalization but required a much higher concentration than LBP. An inhibitory anti-sCD14 mAb was ineffective for serum-mediated internalization. LBP lacking the domain for LPS transfer to CD14 and a CD14 mutant with reduced LPS binding both attenuated TLR4 internalization. Accordingly, LBP is an essential serum molecule for TLR4 internalization, and its LPS transfer to membrane-anchored CD14 (mCD14) is a prerequisite. LBP induced the LPS-stimulated phosphorylation of TBK1, IKKϵ, and IRF3, leading to IFN-ß expression. However, LPS-stimulated late activation of NF-κB or necroptosis were not affected. Collectively, our results indicate that LBP controls LPS-induced TLR4 internalization, which induces TLR adaptor molecule 1 (TRIF)-dependent activation of the TBK1-IKKϵ-IRF3-IFN-ß pathway. In summary, we showed that LBP-mediated LPS transfer to mCD14 is required for serum-dependent TLR4 internalization and activation of the TRIF pathway.


Acute-Phase Proteins/metabolism , Carrier Proteins/metabolism , I-kappa B Kinase/metabolism , Interferon Regulatory Factor-3/metabolism , Lipopolysaccharide Receptors/metabolism , Membrane Glycoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Toll-Like Receptor 4/metabolism , Humans , Lipopolysaccharides/pharmacology , Lymphocyte Antigen 96/metabolism , Phosphorylation/drug effects , Protein Transport/drug effects
8.
Neuroscience ; 377: 87-97, 2018 05 01.
Article En | MEDLINE | ID: mdl-29510211

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of elderly dementia in the world. At present, acetylcholine inhibitors, such as donepezil, galantamine and rivastigmine, are used for AD therapy, but the therapeutic efficacy is limited. We recently proposed T-type voltage-gated Ca2+ channels' (T-VGCCs) enhancer as a new therapeutic candidate for AD. In the current study, we confirmed the pharmacokinetics of SAK3 in the plasma and brain of mice using ultra performance liquid chromatography-tandem mass spectrometry. We also investigated the effects of SAK3 on the major symptoms of AD, such as cognitive dysfunction and amyloid beta (Aß) accumulation, in AppNL-F knock-in (NL-F) mice, which have been established as an AD model. Chronic SAK3 (0.5 mg/kg/day) oral administration for 3 months from 9 months of age improved cognitive function and inhibited Aß deposition in 12-month-old NL-F mice. Using microarray and real-time PCR analysis, we discovered serum- and glucocorticoid-induced protein kinase 1 (SGK1) as one of possible genes involved in the inhibition of Aß deposition and improvement of cognitive function by SAK3. These results support the idea that T-VGCC enhancer, SAK3 could be a novel candidate for disease-modifying therapeutics for AD.


Amyloid beta-Peptides/metabolism , Brain/drug effects , Cognitive Dysfunction/drug therapy , Imidazoles/pharmacology , Nootropic Agents/pharmacology , Spiro Compounds/pharmacology , Administration, Oral , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Brain/pathology , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Female , Gene Expression/drug effects , Humans , Imidazoles/pharmacokinetics , Mice, Inbred C57BL , Mice, Transgenic , Nootropic Agents/pharmacokinetics , Spiro Compounds/pharmacokinetics
9.
Am J Physiol Renal Physiol ; 315(4): F824-F833, 2018 10 01.
Article En | MEDLINE | ID: mdl-29167170

Accumulation of uremic toxins, which exert deleterious effects in chronic kidney disease, is influenced by the intestinal environment; the microbiota contributes to the production of representative uremic toxins, including p-cresyl sulfate and indoxyl sulfate. Canagliflozin is a sodium-glucose cotransporter (SGLT) 2 inhibitor, and it also exerts a modest inhibitory effect on SGLT1. The inhibition of intestinal SGLT1 can influence the gastrointestinal environment. We examined the effect of canagliflozin on the accumulation of uremic toxins in chronic kidney disease using adenine-induced renal failure mice. Two-week canagliflozin (10 mg/kg po) treatment did not influence the impaired renal function; however, it significantly reduced the plasma levels of p-cresyl sulfate and indoxyl sulfate in renal failure mice (a 75% and 26% reduction, respectively, compared with the vehicle group). Additionally, canagliflozin significantly increased cecal short-chain fatty acids in the mice, suggesting the promotion of bacterial carbohydrate fermentation in the intestine. Analysis of the cecal microbiota showed that canagliflozin significantly altered microbiota composition in the renal failure mice. These results indicate that canagliflozin exerts intestinal effects that reduce the accumulation of uremic toxins including p-cresyl sulfate. Reduction of accumulated uremic toxins by canagliflozin could provide a potential therapeutic option in chronic kidney disease.


Canagliflozin/pharmacology , Gastrointestinal Microbiome/drug effects , Renal Insufficiency, Chronic/drug therapy , Toxins, Biological/blood , Animals , Disease Models, Animal , Gastrointestinal Tract/drug effects , Male , Mice, Inbred C57BL , Renal Insufficiency, Chronic/blood , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Toxins, Biological/pharmacology , Uremia/blood , Uremia/drug therapy
10.
Article En | MEDLINE | ID: mdl-29024911

Column choice is crucial to the development of liquid chromatography/tandem mass spectrometry (LC-MS/MS) methods because analyte selectivity is dependent on the nature of the stationary phase. Recently, mixed-mode chromatography, which employs a combination of two or more stationary phases and solvent systems, has emerged as an alternative to multiple, complementary, single-column systems. This report describes the development and validation of a novel analytical method based on LC-MS/MS employing a reversed-phase/cation-exchange/anion-exchange tri-modal column (Scherzo SS-C18; Imtakt) for the simultaneous quantification of various uremic toxins (UTx), including creatinine, 1-methyladenosine, trimethylamine-N-oxide, indoxyl sulfate, p-cresyl sulfate, phenyl sulfate and 4-ethylphenyl sulfate. Stable isotope-labeled compounds were prepared as internal standards (ISs) for each analyte. Mobile phase optimization and appropriate gradient conditions resulted in satisfactory retention and peak resolution that could not have been attained with a single stationary phase LC system. The essential validation parameters, including intra- and inter-assay precision and accuracy, were adequate. The validated method was applied to measure serum levels of the aforementioned compounds in 19 patients with chronic kidney disease. This is the first report detailing the simultaneous quantification of these analytes using stable isotopes as ISs. Our results suggest that Scherzo SS-C18 columns will be considered breakthrough tools in the development of analytical methods for compounds that are difficult to quantify simultaneously in traditional LC systems.


Chromatography, Ion Exchange/methods , Chromatography, Reverse-Phase/methods , Tandem Mass Spectrometry/methods , Toxins, Biological/blood , Humans , Linear Models , Renal Insufficiency, Chronic/blood , Reproducibility of Results , Sensitivity and Specificity
12.
FEBS Lett ; 591(16): 2406-2416, 2017 08.
Article En | MEDLINE | ID: mdl-28741733

Lipopolysaccharide (LPS)-induced activation of Toll-like receptor 4 (TLR4) elicits the innate immune response and can trigger septic shock if excessive. Two antibodies (HT4 and HT52) inhibit LPS-induced human TLR4 activation via novel LPS binding-independent mechanisms. The HT52 epitope resides on leucine-rich repeat 2 (LRR2) and is a feature of many inhibitory antibodies; antigen specificity of HT4 does not reside in LRR2. Here, we identified an HT4 epitope on LRR13 located close to the TLR4 dimerization interface that plays a role in NFκB activation. HT4 and HT52 mutually enhanced TLR4 inhibition. LRR13 is a novel inhibitory epitope and may be useful for developing anti-TLR4 antibodies. Combination therapy with LRR2 and LRR13 may effectively inhibit TLR4 activation.


Amino Acid Motifs , Antibodies, Monoclonal/immunology , Epitopes/immunology , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/immunology , Amino Acid Sequence , Animals , Cell Line , Humans , Lipopolysaccharides/pharmacology , Mice , Protein Multimerization , Protein Structure, Quaternary , Toll-Like Receptor 4/metabolism
13.
Kidney Int ; 92(3): 634-645, 2017 09.
Article En | MEDLINE | ID: mdl-28396122

Gut microbiota is involved in the metabolism of uremic solutes. However, the precise influence of microbiota to the retention of uremic solutes in CKD is obscure. To clarify this, we compared adenine-induced renal failure and control mice under germ-free or specific pathogen-free (SPF) conditions, examining the metabolite profiles of plasma, feces, and urine using a capillary electrophoresis time-of-flight mass spectrometry-based approach. Mice with renal failure under germ-free conditions demonstrated significant changes in plasma metabolites. Among 183 detected solutes, plasma levels of 11 solutes, including major uremic toxins, were significantly lower in germ-free mice than in SPF mice with renal failure. These 11 solutes were considered microbiota-derived uremic solutes and included indoxyl sulfate, p-cresyl sulfate, phenyl sulfate, cholate, hippurate, dimethylglycine, γ-guanidinobutyrate, glutarate, 2-hydroxypentanoate, trimethylamine N-oxide, and phenaceturate. Metabolome profiling showed that these solutes were classified into three groups depending on their origins: completely derived from microbiota (indoxyl sulfate, p-cresyl sulfate), derived from both host and microbiota (dimethylglycine), and derived from both microbiota and dietary components (trimethylamine N-oxide). Additionally, germ-free renal failure conditions resulted in the disappearance of colonic short-chain fatty acids, decreased utilization of intestinal amino acids, and more severe renal damage compared with SPF mice with renal failure. Microbiota-derived short-chain fatty acids and efficient amino acid utilization may have a renoprotective effect, and loss of these factors may exacerbate renal damage in germ-free mice with renal failure. Thus, microbiota contributes substantially to the production of harmful uremic solutes, but conversely, growth without microbiota has harmful effects on CKD progression.


Acute Kidney Injury/metabolism , Gastrointestinal Microbiome/physiology , Metabolome , Renal Insufficiency, Chronic/metabolism , Toxins, Biological/blood , Uremia/metabolism , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/urine , Adenine/toxicity , Animals , Disease Models, Animal , Disease Progression , Electrophoresis, Capillary , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Humans , Kidney/pathology , Mass Spectrometry , Metabolomics/methods , Mice , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/urine , Specific Pathogen-Free Organisms , Toxins, Biological/urine , Uremia/blood , Uremia/urine
14.
Arerugi ; 65(3): 200-5, 2016 May.
Article Ja | MEDLINE | ID: mdl-27193929

The patient was a 6-year-old female with milk allergy and persistent asthma. She experienced anaphylactic reactions just after the inhalation of Inavir (Laninamivir Octanoate Hydrate) to treat flu infection. A skin-prick test showed positive reactions for Inavir inhaler powder and lactose used as an excipient but negative for Laninamivir. Same results were obtained in a drug-stimulated basophil activation test. The lactose excipient in Inavir inhaler powder was supposed to contain milk proteins, which caused anaphylactic reactions. To test this possibility, we examined the contamination of allergic milk proteins in the lactose excipient and found the smear band by silver staining, which was identified as ß-lactoglobulin (ß-LG) by Western blotting using specific monoclonal antibody and patient's sera. The ß-LG in Inavir was supposed to be glycosylated with lactose because the molecular weight was slightly higher than ß-LG standard reference as seen in mobility. In fact, the incubation with lactose in vitro tended to increase molecular weight. Following these results, we herein report that the trace amounts of ß-LG contaminated in the lactose excipient of Inavir could cause immediate allergic reactions. The risk that the lactose-containing dry powder inhalers cause allergic reactions for patients with cow's milk allergy need to be reminded. In particular, the use for flu patients should be paid careful attention because of increased airway hypersensitivity in those patients.


Anaphylaxis/etiology , Lactoglobulins/adverse effects , Lactose/adverse effects , Milk Hypersensitivity/immunology , Child , Female , Humans , Lactoglobulins/immunology , Lactose/immunology , Nebulizers and Vaporizers
...