Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Science ; 382(6670): 573-579, 2023 Nov 03.
Article En | MEDLINE | ID: mdl-37917684

Lithium-metal-halides have emerged as a class of solid electrolytes that can deliver superionic conductivity comparable to that of state-of-the-art sulfide electrolytes, as well as electrochemical stability that is suitable for high-voltage (>4 volt) operations. We show that the superionic conduction in a trigonal halide, such as Li3MCl6 [where metal (M) is Y or Er], is governed by the in-plane lithium percolation paths and stacking interlayer distance. These two factors are inversely correlated with each other by the partial occupancy of M, serving as both a diffusion inhibitor and pillar for maintaining interlayer distance. These findings suggest that a critical range or ordering of M exists in trigonal halides, and we showcase the achievement of high ionic conductivity by adjusting the simple M ratio (per Cl or Li). We provide general design criteria for superionic trigonal halide electrolytes.

2.
Nat Commun ; 14(1): 4149, 2023 Jul 12.
Article En | MEDLINE | ID: mdl-37438468

Lithium-rich layered oxides, despite their potential as high-energy-density cathode materials, are impeded by electrochemical performance deterioration upon anionic redox. Although this deterioration is believed to primarily result from structural disordering, our understanding of how it is triggered and/or occurs remains incomplete. Herein, we propose a theoretical picture that clarifies the irreversible transformation and redox asymmetry of lithium-rich layered oxides by introducing a series of global and local dynamic structural evolution processes involving slab gliding and transition-metal migration. We show that slab gliding plays a key role in trigger/initiating the structural disordering and consequent degradation of the anionic redox reaction. We further reveal that the 'concerted disordering mechanism' of slab gliding and transition-metal migration produces spontaneously irreversible/asymmetric lithiation and de-lithiation pathways, causing irreversible structural deterioration and the asymmetry of the anionic redox reaction. Our findings suggest slab gliding as a crucial, yet underexplored, method for achieving a reversible anionic redox reaction.

3.
J Air Waste Manag Assoc ; 56(7): 911-21, 2006 Jul.
Article En | MEDLINE | ID: mdl-16878584

Ambient measurements were made using two sets of annular denuder system during the four seasons (April 2001 to February 2002) and were then compared with the results during the period of 1996-1997 to estimate the trends and seasonal variations in concentrations of gaseous and fine particulate matter (PM2.5) principal species. Annual averages of gaseous HNO3 and NH3 increased by 11% and 6%, respectively, compared with those of the previous study, whereas HONO and SO2 decreased by 11% and 136%, respectively. The PM2.5 concentration decreased by -17%, 35% for SO4(2-), and 29% for NH4+, whereas NO3- increased by 21%. Organic carbon (OC) and elemental carbon (EC) were 12.8 and 5.98 microg/m(-3), accounting for -26 and 12% of PM2.5 concentration, respectively. The species studied accounted for 84% of PM2.5 concentration, ranging from 76% in winter to 97% in summer. Potential source contribution function (PSCF) analysis was used to identify possible source areas affecting air pollution levels at a receptor site in Seoul. High possible source areas in concentrations of PM2.5, NO3-, SO4(2-), NH4+, and K+ were coastal cities of Liaoning province (possibly emissions from oil-fired boilers on ocean liners and fishing vessels and industrial emissions), inland areas of Heibei/Shandong provinces (the highest density areas of agricultural production and population) in China, and typical port cities (Mokpo, Yeosu, and Busan) of South Korea. In the PSCF map for OC, high possible source areas were also coastal cities of Liaoning province and inland areas of Heibei/Shandong provinces in China. In contrast, high possible source areas of EC were highlighted in the south of the Yellow Sea, indicating possible emissions from oil-fired boilers on large ships between South Korea and Southeast Asia. In summary, the PSCF results may suggest that air pollution levels in Seoul are affected considerably by long-range transport from external areas, such as the coastal zone in China and other cities in South Korea, as well as Seoul itself.


Air Pollutants/analysis , Dust/analysis , Air Movements , Carbon/analysis , Cities , Environmental Monitoring , Korea , Nitrates/analysis , Nitric Acid/analysis , Nitrous Acid/analysis , Particle Size , Quaternary Ammonium Compounds/analysis , Seasons , Sulfates/analysis , Sulfur Dioxide/analysis
4.
J Air Waste Manag Assoc ; 54(4): 432-9, 2004 Apr.
Article En | MEDLINE | ID: mdl-15115372

Fine particles (PM2.5) were collected during all four seasons, from April 2001 to February 2002, in Seoul, South Korea, using an annular denuder system. Elemental compositions of ambient PM2.5 were analyzed using the proton-induced X-ray emission method. The greatest contributors (> or = 2%) to the PM2.5 mass were sulfur (S), silicon (Si), chlorine (Cl), aluminum (Al), and iron (Fe) in the spring; S in the summer; and S and Cl in the fall. S, Cl, and Si were the major elements in the winter. S was the most abundant species among the elements, ranging from 5.3 to 7.9%, followed by Si and Cl. From analysis of variance, PM2.5 mass, Al, Si, potassium, calcium, and Fe showed significant seasonal differences during the four seasons (p < 0.001). Enrichment factor (EF) analysis was carried out to identify the sources affecting the aerosol in the Seoul area. On the basis of the mean EF values, elemental S, copper, zinc, and lead may be emitted from anthropogenic sources (EF > 50). Elemental Al, Si, titanium, and Fe may be emitted from crustal sources (EF < 3). Additionally, a correlation analysis was carried out for source identification. The results of the correlation analysis were confirmed by the results of the EF analysis.


Air Pollutants/analysis , Trace Elements/analysis , Environmental Monitoring , Korea , Particle Size , Seasons
...