Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Shock ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38813920

BACKGROUND: The association between neutrophil extracellular traps (NETs) and the requirement for vasopressor and inotropic support in vasoplegic shock is unclear. This study aimed to investigate the dynamics of plasma levels of NETs and cell-free DNA (cfDNA) up to 48 hours after the admission to the intensive care unit (ICU) for management of vasoplegic shock of infectious (SEPSIS) or non-infectious (following cardiac surgery, CARDIAC) origin. METHODS: Prospective, observational study of NETs and cfDNA plasma levels at 0H (admission) and then at 12H, 24H and 48H in SEPSIS and CARDIAC patients. The Vasopressor Inotropic Score (VIS), the Sequential Organ Failure Assessment (SOFA) score and time spent with invasive ventilation, in ICU and in hospital were recorded. Associations between NETs/cfDNA and VIS and SOFA were analysed by Spearman's correlation (rho), and between NETs/cfDNA and ventilation/ICU/hospitalisation times by generalised linear regression. RESULTS: Both NETs and cfDNA remained elevated over 48 hours in SEPSIS (n = 46) and CARDIAC (n = 30) patients, with time weighted average concentrations greatest in SEPSIS (NETs median difference 0.06 [0.02-0.11], p = 0.005; cfDNA median difference 0.48 [0.20-1.02], p < 0.001). The VIS correlated to NETs (rho = 0.3-0.60 in SEPSIS, p < 0.01, rho = 0.36-0.57 in CARDIAC, p ≤ 0.01) and cfDNA (rho = 0.40-0.56 in SEPSIS, p < 0.01, rho = 0.38-0.47 in CARDIAC, p < 0.05). NETs correlated with SOFA. Neither NETs nor cfDNA were independently associated with ventilator/ICU/hospitalisation times. CONCLUSION: Plasma levels of NETs and cfDNA correlated with the dose of vasopressors and inotropes administered over 48 hours in patients with vasoplegic shock from sepsis or following cardiac surgery. NETs levels also correlated with organ dysfunction. These findings suggest that similar mechanisms involving release of NETs are involved in the pathophysiology of vasoplegic shock irrespective of an infectious or non-infectious etiology.

2.
J Vet Sci ; 24(6): e83, 2023 Nov.
Article En | MEDLINE | ID: mdl-38031520

BACKGROUND: Ellipticine (Ellip.) was recently reported to have beneficial effects on the differentiation of adipose-derived stem cells into mature chondrocyte-like cells. On the other hand, no practical results have been derived from the transplantation of bone marrow stem cells (BMSCs) in a rabbit osteoarthritis (OA) model. OBJECTIVES: This study examined whether autologous BMSCs incubated with ellipticine (Ellip.+BMSCs) could regenerate articular cartilage in rabbit OA, a model similar to degenerative arthritis in human beings. METHODS: A portion of rabbit articular cartilage was surgically removed, and Ellip.+BMSCs were transplanted into the lesion area. After two and four weeks of treatment, the serum levels of proinflammatory cytokines, i.e., tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2), were analyzed, while macroscopic and micro-computed tomography (CT) evaluations were conducted to determine the intensity of cartilage degeneration. Furthermore, immuno-blotting was performed to evaluate the mitogen-activated protein kinases, PI3K/Akt, and nuclear factor-κB (NF-κB) signaling in rabbit OA models. Histological staining was used to confirm the change in the pattern of collagen and proteoglycan in the articular cartilage matrix. RESULTS: The transplantation of Ellip.+BMSCs elicited a chondroprotective effect by reducing the inflammatory factors (TNF-α, PGE2) in a time-dependent manner. Macroscopic observations, micro-CT, and histological staining revealed articular cartilage regeneration with the downregulation of matrix-metallo proteinases (MMPs), preventing articular cartilage degradation. Furthermore, histological observations confirmed a significant boost in the production of chondrocytes, collagen, and proteoglycan compared to the control group. Western blotting data revealed the downregulation of the p38, PI3K-Akt, and NF-κB inflammatory pathways to attenuate inflammation. CONCLUSIONS: The transplantation of Ellip.+BMSCs normalized the OA condition by boosting the recovery of degenerated articular cartilage and inhibiting the catabolic signaling pathway.


Cartilage, Articular , Ellipticines , Rabbits , Humans , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ellipticines/metabolism , X-Ray Microtomography , Inflammation/veterinary , Proteoglycans/metabolism , Collagen/metabolism , Bone Marrow Cells/metabolism
3.
Biomedicines ; 11(4)2023 Apr 09.
Article En | MEDLINE | ID: mdl-37189750

The survival rate of patients with osteosarcoma (OS) has not improved over the last 30 years. Mutations in the genes TP53, RB1 and c-Myc frequently occur in OS and enhance RNA Polymerase I (Pol I) activity, thus supporting uncontrolled cancer cell proliferation. We therefore hypothesised that Pol I inhibition may be an effective therapeutic strategy for this aggressive cancer. The Pol I inhibitor CX-5461 has demonstrated therapeutic efficacy in different cancers in pre-clinical and phase I clinical trials; thus, the effects were determined on ten human OS cell lines. Following characterisation using genome profiling and Western blotting, RNA Pol I activity, cell proliferation and cell cycle progression were evaluated in vitro, and the growth of TP53 wild-type and mutant tumours was measured in a murine allograft model and in two human xenograft OS models. CX-5461 treatment resulted in reduced ribosomal DNA (rDNA) transcription and Growth 2 (G2)-phase cell cycle arrest in all OS cell lines. Additionally, tumour growth in all allograft and xenograft OS models was effectively suppressed without apparent toxicity. Our study demonstrates the efficacy of Pol I inhibition against OS with varying genetic alterations. This study provides pre-clinical evidence to support this novel therapeutic approach in OS.

4.
J Ginseng Res ; 47(1): 155-158, 2023 Jan.
Article En | MEDLINE | ID: mdl-36644387

In the present study, we investigated whether treatment with KRG improve the parameters of immune activity such as the cytotoxicity, populations of CD4+ CD8+T cell, CD3-CD172-CD8+ NK cell and CD172+ monocyte as well as natural cytotoxicity receptors such as Nkp46, Nkp44, Nkp30. In results, KRG significantly increased these immune activities. These results indicate that KRG has distinct immune-enhancing effects by increasing the roles of T cells and NK cell in porcine.

5.
Mol Pharm ; 19(4): 1059-1067, 2022 04 04.
Article En | MEDLINE | ID: mdl-35253431

Activation of the IRE-1/XBP-1s pathway supports tumor progression. Here, we report a novel prodrug, TC-D-F07, in which a thiol-reactive dinitrobenzenesulfonyl (Dns) cage was installed onto the C8 hydroxyl of the covalent IRE-1 inhibitor D-F07. The electron-withdrawing Dns group in TC-D-F07 stabilizes the neighboring 1,3-dioxane acetal, allowing for stimulus-mediated control of its inhibitory activity. TC-D-F07 exhibits high sensitivity to intracellular thiols. Because tumor cells exhibit higher concentrations of glutathione and cysteine, treatment with TC-D-F07 results in more sustained levels of D-F07 in transformed versus normal cells. In addition, we show that a dinitrophenyl cysteine adduct resulting from cleavage of the Dns group induces endoplasmic reticulum (ER) stress, causing tumor cells to increase the expression of XBP-1s. The accumulated levels of D-F07 and its gradual decomposition into the active IRE-1 inhibitor eventually deprive tumor cells of XBP-1s, leading to more severe apoptosis than those treated with its uncaged analogue.


Neoplasms , Prodrugs , Apoptosis , Endoplasmic Reticulum Stress , Humans , Neoplasms/drug therapy , Prodrugs/pharmacology
6.
Phytomedicine ; 100: 154039, 2022 Jun.
Article En | MEDLINE | ID: mdl-35344713

BACKGROUND: Osteoarthritis (OA) is the most common joint complaint resulting in pain, disability, and loss of quality of life. On the other hand, ginsenoside-Rb1 is a plant product derived from ginseng that possesses immune-regulation and anti-inflammatory activities. However, it has been reported that different rout of administration but hydrogel-based Ginsenoside-Rb1 in an OA rabbit model has not been investigated. PURPOSE: The aim of this study was to investigate the potential effects of ginsenoside-Rb1 such as anti-arthritic activity in a rabbit knee OA model via NF- κB, PI3K/Akt, and P38/(MAPK) pathways. STUDY DESIGN: In the current study, rabbit osteoarthritis was induced by hollow trephine on the femur trochlea and the hydrogel-based Ginsenoside-Rb1 sheets were inserted on the rabbit knee to assess the anti-arthritis activity of ginsenoside-Rb1 which is sustained release. METHODS: After the hydrogel-based Rb1 sheet insert on the rabbit knee, macroscopic and micro CT was performed for investigation of chondroprotective effect. Matrix metalloproteinases (MMPs) and apoptotic expression were assessed through Immunohistochemistry and RT-PCR assay. In addition, the flow cytometry technique was used for the investigation of intracellular reactive oxygen species (ROS) production and histological changes were examined by HE, safranin O, and Masson trichrome staining method. Furthermore, the NF- κB, PI3K/Akt, and P38/(MAPK) pathways were investigated using Western blot analysis. RESULTS: Macroscopic and micro CT investigation of hydrogel-Rb1 treatment showed a dose-dependent chondroprotective effect. Immunohistochemistry and RT-PCR revealed that expression of matrix metalloproteinases (MMPs) and apoptotic markers TNF-α, caspase-3, and bax are down-regulated in a dose-dependent fashion following implantation of hydrogel-Rb. Higher levels of intracellular reactive oxygen species (ROS) were observed in the OA group. In histopathological investigation of hydrogel-Rb1 exhibited larger amounts of chondro cells, glycosaminoglycan's, and collagen compared to the defect group. Furthermore, the NF- κB, PI3K/Akt, and P38/(MAPK) pathways were downregulated by hydrogel-Rb1 while the disease model showed upstream. In the meantime, MMP expression level was considerably down-regulated. CONCLUSIONS: Our results indicate the protective effect of ginsenoside-Rb1 against OA pathogenesis through prevention of apoptosis with suppression of ROS production and activation of NF-κB signaling through downregulation of the MAPK and PI3K/Akt signaling pathways.


Ginsenosides , Osteoarthritis , Animals , Cartilage , Down-Regulation , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Hydrogels , NF-kappa B/metabolism , Osteoarthritis/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quality of Life , Rabbits , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Invest New Drugs ; 40(3): 529-536, 2022 06.
Article En | MEDLINE | ID: mdl-35201535

BACKGROUND: Uterine leiomyosarcoma is a rare aggressive smooth muscle cancer with poor survival rates. RNA Polymerase I (Pol I) activity is elevated in many cancers supporting tumour growth and prior studies in uterine leiomyosarcoma revealed enlarged nucleoli and upregulated Pol I activity-related genes. This study aimed to investigate the anti-tumour potential of CX-5461, a Pol I transcription inhibitor currently being evaluated in clinical trials for several cancers, against the human uterine leiomyosarcoma cell line, SK-UT-1. METHODS: SK-UT-1 was characterised using genome profiling and western blotting. The anti-tumour effects of CX-5461 were investigated using cell proliferation assays, expression analysis using qRT-PCR, and BrdU/PI based cell cycle analysis. RESULTS: Genetic analysis of SK-UT-1 revealed mutations in TP53, RB1, PTEN, APC and TSC1 & 2, all potentially associated with increased Pol I activity. Protein expression analysis showed dysregulated p53, RB1 and c-Myc. CX-5461 treatment resulted in an anti-proliferation response, G2 phase cell-cycle arrest and on-target activity demonstrated by reduced ribosomal DNA transcription. CONCLUSIONS: SK-UT-1 was confirmed as a representative model of uterine leiomyosarcoma and CX-5461 has significant potential as a novel adjuvant for this rare cancer.


Benzothiazoles , Leiomyosarcoma , Naphthyridines , Uterine Neoplasms , Benzothiazoles/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , Female , Humans , Leiomyosarcoma/drug therapy , Leiomyosarcoma/genetics , Leiomyosarcoma/metabolism , Naphthyridines/pharmacology , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase I/metabolism , Signal Transduction/drug effects , Uterine Neoplasms/drug therapy , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism
8.
J Inflamm Res ; 14: 3555-3568, 2021.
Article En | MEDLINE | ID: mdl-34335042

PURPOSE: The pathogenesis of osteoarthritis (OA) is characterized by joint degeneration. The pro-inflammatory cytokine interleukin (IL)-1ß plays a vital role in the pathogenesis of OA by stimulation of specific signaling pathways like NF-κB, PI3K/Akt, and MAPKs pathways. The catabolic role of growth factors in the OA may be inhibited cytokine-activated pathogen. The purpose of this study was to investigate the potential effects of insulin-like growth factor-1 (IGF-1) on IL-1ß-induced apoptosis in rabbit chondrocytes in vitro and in an in vivo rabbit knee OA model. METHODS: In the present study, the OA developed in chondrocyte with the treatment of IL-1ß and articular cartilage ruptures by removal of cartilage from the rabbit knee femoral condyle. After IGF-1 treatment, immunohistochemistry and qRT-PCR were identified OA expression with changes in MMPs (matrix metalloproteinases). The production of ROS (intracellular reactive oxygen species) in the OA was detected by flow cytometry. Further, the disease progression was microscopically investigated and pathophysiological changes were analyzed using histology. The NF-κB, PI3K/Akt and P38 (MAPK) specific pathways that are associated with disease progression were also checked using the Western blot technique. RESULTS: The expression of MMPs and various apoptotic markers are down-regulated following administration of IGF-1 in a dose-dependent fashion while significantly up-regulation of TIMP-1. The results showed that higher levels of ROS were observed upon treatment of chondrocytes and chondral OA with IL-1ß. Collectively, our results indicated that IGF-1 protected NF-κB pathway by suppression of PI3K/Akt and MAPKs specific pathways. Furthermore, the macroscopic and pathological investigation showed that it has a chondroprotective effect by the formation of hyaline cartilage. CONCLUSION: Our results indicate a protective effect of IGF-1 against OA pathogenesis by inhibition of NF-κB signaling via regulation of the MAPK and PI3K/Akt signaling pathways and prevention of apoptosis by suppression of ROS production.

9.
J Ginseng Res ; 45(3): 450-455, 2021 May.
Article En | MEDLINE | ID: mdl-34025138

Korean Red Ginseng (KRG) is an herbal oriental medicine known to alleviate cardiovascular dysfunction. To analysis the expression of diabetic cardiac complication-associated genes in db/db mice, we studied the cardiac gene expression following KRG treatment. In result, a total of 585 genes were found to be changed in db/db mice. Among the changed expression, 245 genes were found to 2-fold upregulated, and 340 genes were 2-fold downregulated. In addition, the changed gene expressions were ameliorated by KRG. In conclusion, KRG may be possible to normalize cardiac gene expressions in db/db mice.

10.
J Ginseng Res ; 45(2): 287-294, 2021 Mar.
Article En | MEDLINE | ID: mdl-33841009

BACKGROUND: Ginsenoside Rb1 (G-Rb1), one of the major active compounds in Panax ginseng, has already been shown to reduce inflammation in various diseases. Osteoarthritis (OA) has traditionally been considered a degenerative disease with degradation of joint articular cartilage. However, recent studies have shown the association of inflammation with OA. In the present study, we investigated whether Rb1 had an antiinflammatory effect on monoiodoacetate (MIA)-induced OA in ovariectomized rats as a model of postmenopausal arthritis. METHODS: G-Rb1 at a dosage of 3 and 10 µg/kg body weight was administered every 3 days intraarticularly for a period of 4 weeks to observe antiarthritic effects. Diclofenac (10 mg/kg) served as a positive control. RESULTS: The administration of Rb1 significantly ameliorated OA inflammatory symptoms and reduced serum levels of inflammatory cytokines. Furthermore, G-Rb1 administration considerably enhanced the expression of bone morphogenetic protein-2 and collagen 2A and reduced the levels of matrix metalloproteinase-13 genes, indicating a chondroprotective effect of G-Rb1. G-Rb1 also significantly reduced the expression of several inflammatory cytokines/chemokines (interferon gamma (IFN-γ), monocyte chemoattractant protein-1 (MCP-1)/CCL-2, interleukin [IL]-1ß, and IL-6). Histological analysis demonstrated that G-Rb1 significantly attenuated the pathological changes in MIA-induced OA in ovariectomized rats. Safranin O and toluidine blue staining further demonstrated that G-Rb1 effectively prevented the degradation of cartilage and glycosaminoglycans, respectively. CONCLUSION: Overall, our results suggest that G-Rb1 exerts cartilage protective effect on MIA-induced ovariectomized OA rats, by inhibiting inflammatory mediators such as IL-6, IL-1ß, MCP-1/CCL-2, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2). These results shed a light on possible therapeutic application of G-Rb1 in OA.

11.
Mol Cancer Ther ; 19(12): 2432-2444, 2020 12.
Article En | MEDLINE | ID: mdl-33051362

The IRE-1 kinase/RNase splices the mRNA of the XBP-1 gene, resulting in the spliced XBP-1 (XBP-1s) mRNA that encodes the functional XBP-1s transcription factor that is critically important for the growth and survival of B-cell leukemia, lymphoma, and multiple myeloma (MM). Several inhibitors targeting the expression of XBP-1s have been reported; however, the cytotoxicity exerted by each inhibitor against cancer cells is highly variable. To design better therapeutic strategies for B-cell cancer, we systematically compared the ability of these compounds to inhibit the RNase activity of IRE-1 in vitro and to suppress the expression of XBP-1s in mouse and human MM cell lines. Tricyclic chromenone-based inhibitors B-I09 and D-F07, prodrugs harboring an aldehyde-masking group, emerged as the most reliable inhibitors for potent suppression of XBP-1s expression in MM cells. The cytotoxicity of B-I09 and D-F07 against MM as well as chronic lymphocytic leukemia and mantle cell lymphoma could be further enhanced by combination with inhibitors of the PI3K/AKT pathway. Because chemical modifications of the salicylaldehyde hydroxy group could be used to tune 1,3-dioxane prodrug stability, we installed reactive oxygen species-sensitive structural cage groups onto these inhibitors to achieve stimuli-responsive activities and improve tumor-targeting efficiency.


Antineoplastic Agents/pharmacology , Drug Development , Endoribonucleases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Apoptosis , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Development/methods , Drug Screening Assays, Antitumor/methods , Endoribonucleases/genetics , Endoribonucleases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydrogen Peroxide/metabolism , Leukemia, B-Cell/drug therapy , Leukemia, B-Cell/etiology , Leukemia, B-Cell/metabolism , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/etiology , Lymphoma, B-Cell/metabolism , Mice , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism
12.
J Ginseng Res ; 44(3): 483-489, 2020 May.
Article En | MEDLINE | ID: mdl-32372870

BACKGROUND: Korean Red Ginseng (KRG) has been known to possess many ginsenosides. These ginsenosides are used for curing cardiovascular problems. The present study show the protective potential of KRG against doxorubicin (DOX)-induced myocardial dysfunction, by assessing electrocardiographic, hemodynamic, and biochemical parameters and histopathological findings. METHODS: Animals were fed a standard chow and adjusted to their environment for 3 days before the experiments. Next, the rats were equally divided into five groups (n = 9, each group). The animals were administered with KRG (250 and 500 mg/kg) for 10 days and injected with DOX (20 mg/kg, subcutaneously, twice at a 24-h interval) on the 8th and 9th day. Electrocardiography and echocardiography were performed to study hemodynamics. Plasma levels of superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde were measured. In addition, the dose of troponin I and activity of myeloperoxidase in serum and cardiac tissue were analyzed, and the histopathological findings were evaluated using light microscopy. RESULTS: Administration of KRG at a dose of 250 and 500 mg/kg recovered electrocardiographic changes, ejection fraction, fractional shortening, left ventricular systolic pressure, the maximal rate of change in left ventricle contraction (+dP/dtmax), and left ventricle relaxation (-dP/dtmax). In addition, KRG treatment significantly normalized the oxidative stress markers in plasma, dose dependently. In addition, the values of troponin I and myeloperoxidase were ameliorated by KRG treatment, dose dependently. And, KRG treatment showed better histopathological findings when compared with the DOX control group. CONCLUSION: These mean that KRG mitigates myocardial damage by modulating the hemodynamics, histopathological abnormality, and oxidative stress related to DOX-induced cardiomyopathy in rats. The results of the present study show protective effects of KRG on cardiac toxicity.

13.
Mol Immunol ; 120: 136-145, 2020 04.
Article En | MEDLINE | ID: mdl-32120181

Evasion of the immune system is often associated with malignant tumors. The cancer cell microenvironment plays an important role in tumor progression, but its mechanism is largely unknown. Here we show that an extracellular compound derived from gastric cancer (GC-EC) selectively suppresses CD161+CD3- natural killer (NK) cells. Splenocytes treated with GC-EC showed considerable proliferation and the CD161+CD3- NK cell population was time-dependently suppressed. Intracellular staining of IFN-γ was shown to be down-regulated in concert with granzyme B and perforin. A cytotoxicity assay of splenocytes treated with GC-EC against K-562 cells showed a significant reduction in cytolytic activity. Further, the immune-suppressive effect of GC-EC was more evident in a syngeneic tumor model in C57BL/6 mice. Animals treated with B16 F10 and GC-EC exhibited more aggravated tumor formation than animals treated with B16 F10 only. We demonstrated that inhibition of apoptosis while increasing PI3 K/AKT levels may provoke tumor formation by GC-EC. A cytokine array revealed the presence of several cytokines in GC-EC that negatively regulate immune cytolytic activity and could be potential candidates for immune-suppressive effects.


Killer Cells, Natural/immunology , Stomach Neoplasms/immunology , Animals , Apoptosis/immunology , CD3 Complex/immunology , Cell Proliferation , Cytokines/immunology , Cytotoxicity, Immunologic , Extracellular Space/immunology , Humans , Immune Tolerance , K562 Cells , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily B/immunology , Rats , Rats, Sprague-Dawley , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Microenvironment/immunology
14.
J Ginseng Res ; 44(2): 308-311, 2020 Mar.
Article En | MEDLINE | ID: mdl-32148413

Extracts of ginseng species show antihyperglycemic activity. We evaluated the inhibitory effects of diabetic complications for Korean Red Ginseng (KRG), which is enriched in ginsenosides using Otsuka Long-Evans Tokushima Fatty (OLETF) rats. The animals were divided into one of four groups (n = 6∼9): Long-Evans-Tokushima-Otsuka rats (control rats), OLETF rats, rats given 200 mg/kg KRG, and rats given 400 mg/kg KRG. We examined the protective potential of KRG against type 2 diabetic illnesses. The results exhibited that KRG showed significant antihyperglycemic and antioxidative effects in KRG-treated OLETF rats. And, our results proposed the amelioration of cardiac function through normalized ejection fraction, fractional shortening, and vascular reactivity. Furthermore, histopathological abnormalities in the OLETF rats were prevented by KRG treatment.

15.
Int J Mol Med ; 44(6): 2321-2328, 2019 Dec.
Article En | MEDLINE | ID: mdl-31661129

Kaempferol­3­O­ß­rutinoside is one of the compounds isolated from tartary buckwheat (Fagopyrum tatricum), and its biological effects have not been studied yet. The present study examined the anti­inflammatory effects of kaempferol­3­O­ß­rutinoside and explore its regulatory mechanisms in lipopolysaccharide (LPS)­induced macrophage RAW264.7 cells. Kaempferol­3­O­ß­rutinoside exhibited no cytotoxic effect in RAW 264.7 macrophage and 293 cell lines up to 300 µM. As the concentration of kaempferol­3­O­ß­rutinoside was increased, the activity of nitric oxide was inhibited in LPS­stimulated RAW264.7 cells. In addition, kaempferol­3­O­ß­rutinoside treatment downregulated the expression of inflammation­related cytokines tumor necrosis factor­α and interleukin­6 in LPS­stimulated RAW264.7 cells. Furthermore, kaempferol­3­O­ß­rutinoside treatment suppressed inflammatory­mediated factors, such as inducible nitric oxide synthase and cyclooxyganse­2. These inflammation­related proteins are known to be regulated by NF­κB and mitogen­activated protein kinase (MAPK) signaling, therefore the effect of kaempferol­3­O­ß­rutinoside on these pathways was investigated. The results demonstrated that kaempferol­3­O­ß­rutinoside decreased the expression of inhibitor of κB (IκB) protein and IκB kinases; as a result, the nuclear translocation and expression of NF­κB was inhibited in LPS­stimulated RAW264.7 cells. Furthermore, kaempferol­3­O­ß­rutinoside inhibited the phosphorylation of p38, extracellular signal­regulated kinase and stress­activated protein kinase in LPS­stimulated RAW264.7 cells. Thus, the present data demonstrated that kaempferol­3­O­ß­rutinoside suppressed inflammation­related gene expression through the NF­κB and MAPK pathways, and suggested that it may be a useful reagent in pharmacological research.


Cell Proliferation/drug effects , Inflammation Mediators/pharmacology , Inflammation/drug therapy , Kaempferols/pharmacology , Animals , Gene Expression Regulation/drug effects , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice , NF-kappa B/genetics , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Phosphorylation/drug effects , RAW 264.7 Cells
16.
J Med Chem ; 62(11): 5404-5413, 2019 06 13.
Article En | MEDLINE | ID: mdl-31083990

Activation of the IRE-1/XBP-1 pathway has been linked to many human diseases. We report a novel fluorescent tricyclic chromenone inhibitor, D-F07, in which we incorporated a 9-methoxy group onto the chromenone core to enhance its potency and masked the aldehyde to achieve long-term efficacy. Protection of the aldehyde as a 1,3-dioxane acetal led to strong fluorescence emitted by the coumarin chromophore, enabling D-F07 to be tracked inside the cell. We installed a photolabile structural cage on the hydroxy group of D-F07 to generate PC-D-F07. Such a modification significantly stabilized the 1,3-dioxane acetal protecting group, allowing for specific stimulus-mediated control of inhibitory activity. Upon photoactivation, the re-exposed hydroxy group on D-F07 triggered the aldehyde-protecting 1,3-dioxane acetal to slowly decompose, leading to the inhibition of the RNase activity of IRE-1. Our novel findings will also allow for spatiotemporal control of the inhibitory effect of other salicylaldehyde-based compounds currently in development.


Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Ribonucleases/antagonists & inhibitors , Ribonucleases/metabolism
17.
Animals (Basel) ; 9(5)2019 May 09.
Article En | MEDLINE | ID: mdl-31075855

Dietary exogenous proteases (ENZ) can be used in poultry production to improve the growth of chickens fed low-protein (LP) diets. We hypothesized that ENZ supplemented in an LP diet would improve growth performance and physiological response in broilers for 8-35 days. To investigate this, we used a 2 × 2 factorial design with crude protein (CP, normal diet (NP) and LP) and ENZ. The LP diet contained low in 1% CP and ca. 8-12% amino acids compared to the NP diet and both NP and LP diets were added without or with (1 g/kg of diet) ENZ. We randomly allocated 720 1-week-old Ross 308 male chicks to 48 pens and experimental diets. At 21 days, dietary ENZ, but not CP, increased (p = 0.007) live body weight. Body weight gain from 8-21 days was affected (p = 0.006) by dietary ENZ, but was not affected (p = 0.210) by CP. The feed conversion ratio was affected by both CP and ENZ during the starter period (p < 0.05), by ENZ (p = 0.034) during the finisher period, and by CP (p < 0.001) during the whole period. However, the interaction between CP and ENZ did not significantly affect growth performance (p > 0.05). Dietary ENZ increased (p = 0.013) the relative weight of liver at 21 days. CP and ENZ affected (p = 0.043) total short-chain fatty acids at 21 days. However, this effect was not seen (p = 0.888) at 35 days. Dietary CP increased (p < 0.05) the serum concentrations of both uric acid and creatinine in broilers. We concluded that dietary ENZ is more beneficial to younger broilers, independent of CP levels, and that its effect was restricted to body weight and the feed conversion ratio.

18.
Mol Cell Biochem ; 458(1-2): 159-169, 2019 Aug.
Article En | MEDLINE | ID: mdl-31020492

Cyclosporin A (CSA) is a widely used drug to prevent the immune cell function. It is well known that CSA blocks transcription of cytokine genes in activated T cells. The connection between T cells and CSA has been well established. However, the effect of CSA on natural killer (NK) cells is not thoroughly understood. Therefore, in the present study, splenocytes and peripheral blood mononuclear cells (PBMCs) were treated with CSA in the presence of concanavalin A (Con A) or interleukin-2 (IL-2). CSA at higher concentrations induces apoptosis and inhibition of proliferation, while lower concentrations showed synergistically enhanced proliferation in splenocytes and PBMCs. Further, CSA favored the in vitro conversion of CD3+CD161+ cells. Splenocytes and PBMC were found to have synergistic proliferation with Con A, and PBMC exhibited significantly higher expression of NKp30, NKp44, and granzyme B along with enhanced cytotoxicity against K-562 cells in CSA-treated animals. Proliferation assay also showed that proliferation of CD161+ cells was higher in CSA-treated animals. Collectively, our results suggest that CSA differentially influences the population, function, and expression of the NK cell phenotype.


CD3 Complex/immunology , Cell Proliferation/drug effects , Cyclosporine/pharmacology , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily B/immunology , Animals , Apoptosis/drug effects , Apoptosis/immunology , Concanavalin A/pharmacology , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Granzymes/immunology , Humans , Interleukin-2/pharmacology , K562 Cells , Killer Cells, Natural/cytology , Male , Natural Cytotoxicity Triggering Receptor 2/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Rats , Rats, Sprague-Dawley
19.
Int J Mol Med ; 43(4): 1859-1865, 2019 Apr.
Article En | MEDLINE | ID: mdl-30720064

Inhibition of over­activated inflammation has been demonstrated as one of the most efficient strategies for treating inflammatory diseases. In the present study, 6­formyl umbelliferone (6FU) was used to evaluate its anti­inflammatory effects on lipopolysaccharide (LPS)­stimulated RAW 264.7 macrophages. 6FU inhibited chronic inflammatory processes, including increasing nitric oxide levels, and the expression of pro­inflammatory genes and producing cytokines was investigated by a nitrite assay and reverse transcription­polymerase chain reaction, respectively. Nitric oxide and pro­inflammatory cytokines, including tumor necrosis factor­α, interleukin (IL)­1ß and IL­6 were decreased by treatment with 6FU, without cell cytotoxicity in LPS­stimulated RAW 264.7 cells, which was measured by a WST­1 assay. In the western blot analysis, the expression levels of phosphorylated extracellular signal­regulated kinase (ERK)1/2 was downregulated in 6FU­treated cells. Furthermore, in the western blotting and immunofluorescence staining results, translocation activities of ERK1/2 and NF­κB from the cytoplasm to the nucleus were suppressed, which may inhibit translation of numerous proteins associated with pro­inflammation, including inducible nitric oxide synthase and cyclooxygenase­2. Therefore, based on these results, it was suggested that 6FU may be a potential candidate for the development of agents against chronic inflammation.


Anti-Inflammatory Agents/pharmacology , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Umbelliferones/pharmacology , Animals , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Enzyme Activation/drug effects , Lipopolysaccharides , Mice , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , Protein Transport/drug effects , RAW 264.7 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Saudi J Biol Sci ; 26(1): 96-104, 2019 Jan.
Article En | MEDLINE | ID: mdl-30622412

OBJECTIVE: Anti-inflammatory activity of rhein in animal models with potential mechanism of actions. METHODS: Rhein was isolated from Cassia fistula L. flowers collected in Chennai, Tamil Nadu, India. Its anti-inflammatory activity was then investigated in Wistar rats and mice using carrageenan-induced hind paw oedema, croton oil-induced ear oedema, cotton pellet-induced granuloma and acetic acid-induced vascular permeability models. RESULTS: Administration of rhein (10, 20, 40 mg/kg) significantly (p < 0.05) inhibited carrageenan-induced paw oedema in rats and croton oil-induced ear oedema in mice in dose-dependent manners. Continual administration of rhein to rats using implanted cotton pellets significantly (p < 0.05) reduced granuloma formation (20 mg/kg: 17.24%; 40 mg/kg: 36.12%) compared to control group animals. Administration of rhein increased the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and decreased the levels of nitrite, interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA) and vascular endothelial growth factor (VEGF) compared to control animals. Western blotting results revealed that rhein diminished carrageenan-induced cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) and increased heme oxygenase (HO)-1, nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPAR)-γ and heat shock protein (HSP)-72 expression after 6 h in the paw oedema model. CONCLUSION: The anti-inflammatory mechanisms of rhein might be related to decrease in the levels of MDA, iNOS and COX-2 and the stimulation of HO-1, PPAR-γ and Nrf2 expression via increases in the activities of CAT, SOD and GSH-px through the suppression of nitrite, TNF-α, IL-6 and IL-1ß.

...